# **Final Exam**

- > 2:00 5:00 pm Fri Apr 16 CSE B
- Closed Book
- Format similar to midterm
- Will cover whole course, with emphasis on material after midterm (binary search trees, sorting, graphs)

- 1 -

# Suggested Study Strategy

- Review and understand the slides.
- Read the textbook, especially where concepts and methods are not yet clear to you.
- Do all of the practice problems I provide (available early next week).
- > Do extra practice problems from the textbook.
- Review the midterm and solutions for practice writing this kind of exam.
- Practice writing clear, succint pseudocode!
- See me or one of the TAs if there is anything that is still not clear.



### Assistance

- Regular office hours will not be held
- You may see either me or one of the TAs by appointment
- Please note that I will be away at a conference Apr 15 -16 (until the exam)

# **End of Term Review**

- 4 -



# **Summary of Topics**

- 1. Binary Search Trees
- 2. Sorting
- 3. Graphs



# Topic 1. Binary Search Trees



# **Binary Search Trees**

#### Insertion

#### Deletion

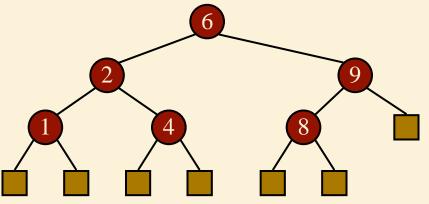
#### > AVL Trees

Splay Trees



### **Binary Search Trees**

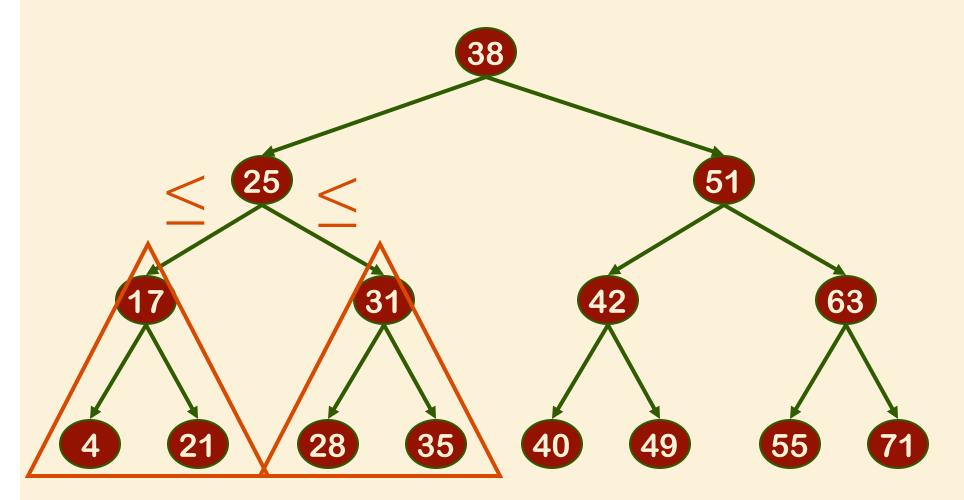
- A binary search tree is a binary tree storing key-value entries at its internal nodes and satisfying the following property:
  - □ Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have  $key(u) \le key(v) \le key(w)$
- The textbook assumes that external nodes are 'placeholders': they do not store entries (makes algorithms a little simpler)
- An inorder traversal of a binary search trees visits the keys in increasing order
- Binary search trees are ideal for dictionaries with ordered keys.





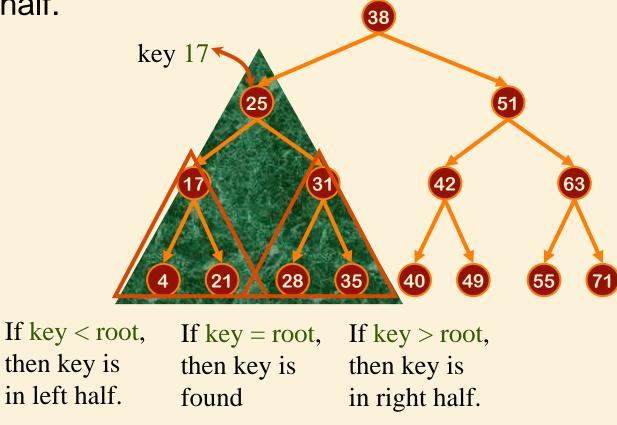
### **Binary Search Tree**

All nodes in left subtree  $\leq$  Any node  $\leq$  All nodes in right subtree



### Search: Define Step

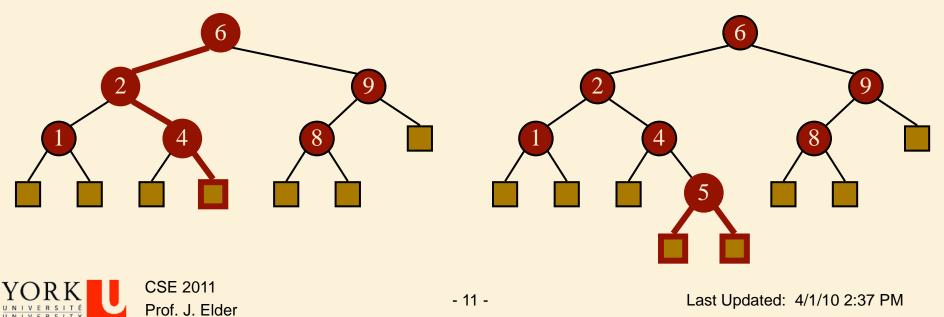
- Cut sub-tree in half.
- > Determine which half the key would be in.
- Keep that half.





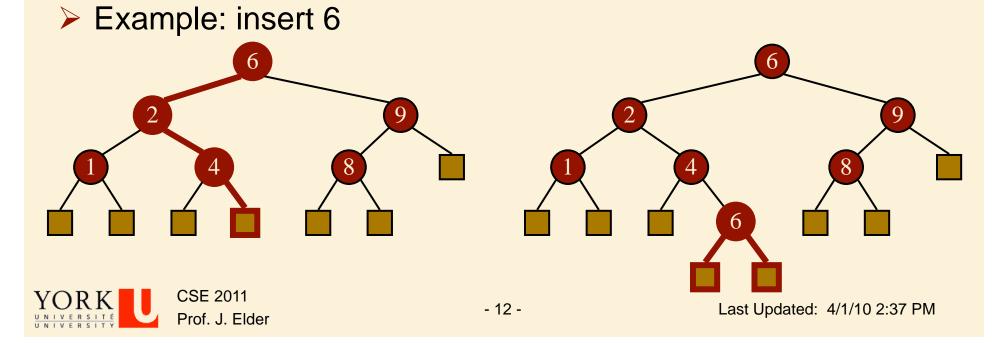
# Insertion

- To perform operation insert(k, o), we search for key k (using TreeSearch)
- Suppose k is not already in the tree, and let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5



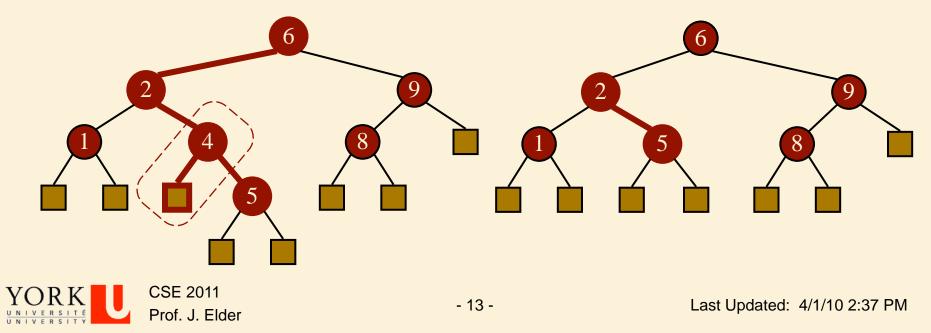
### Insertion

- Suppose k is already in the tree, at node v.
- We continue the downward search through v, and let w be the leaf reached by the search
- Note that it would be correct to go either left or right at v. We go left by convention.
- We insert k at node w and expand w into an internal node



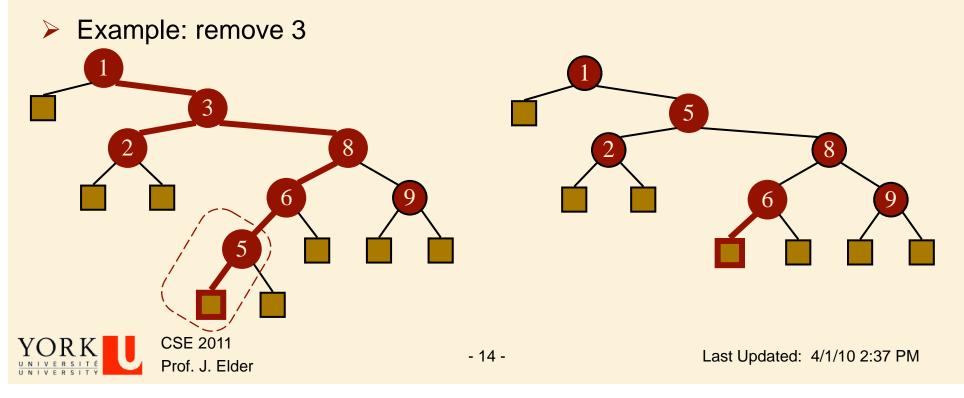
# Deletion

- > To perform operation remove(k), we search for key k
- > Suppose key k is in the tree, and let v be the node storing k
- If node v has a leaf child w, we remove v and w from the tree with operation removeExternal(w), which removes w and its parent
- Example: remove 4



# Deletion (cont.)

- Now consider the case where the key k to be removed is stored at a node v whose children are both internal
  - $\Box$  we find the internal node w that follows v in an inorder traversal
  - $\Box$  we copy key(w) into node v
  - we remove node w and its left child z (which must be a leaf) by means of operation removeExternal(z)



### Performance

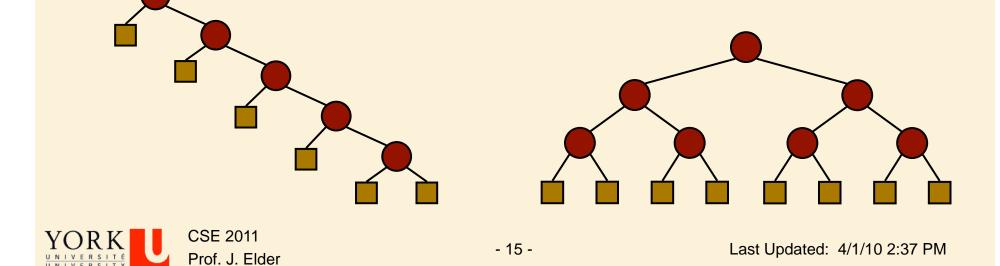
Consider a dictionary with n items implemented by means of a binary search tree of height h

 $\Box$  the space used is O(n)

 $\Box$  methods find, insert and remove take O(h) time

The height h is O(n) in the worst case and O(log n) in the best case

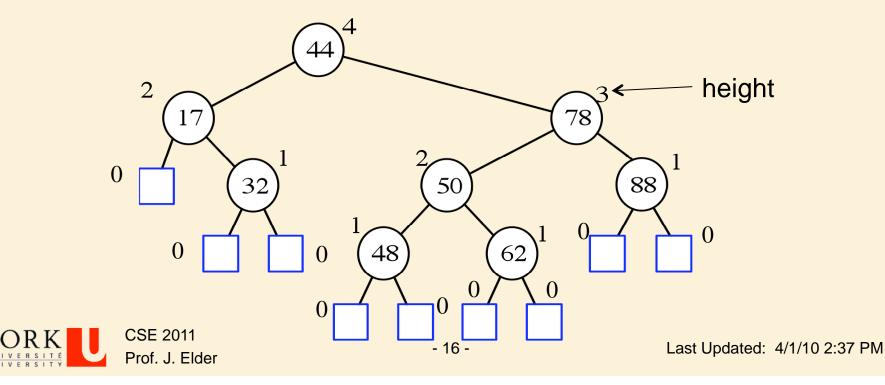
It is thus worthwhile to balance the tree (next topic)!



#### **AVL Trees**

#### > AVL trees are balanced.

An AVL Tree is a binary search tree in which the heights of siblings can differ by at most 1.



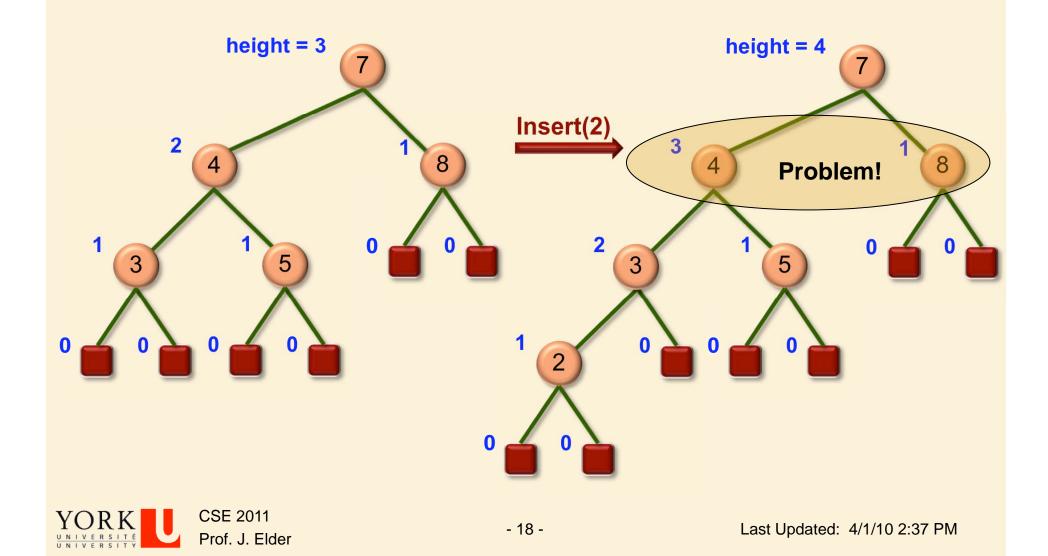
### Height of an AVL Tree

**Claim**: The *height* of an AVL tree storing n keys is O(log n).  $\succ$ 



# Insertion

> Imbalance may occur at any ancestor of the inserted node.



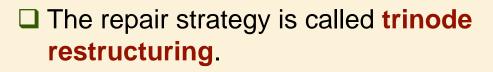
### Insertion: Rebalancing Strategy

#### Step 1: Search

□ Starting at the inserted node, traverse toward the root until an imbalance is discovered. height = 4 3 8 **Problem!** 0 5 3 0 Ω

# Insertion: Rebalancing Strategy

Step 2: Repair



□ 3 nodes x, y and z are distinguished:

 $\Rightarrow$  z = the parent of the high sibling

 $\Rightarrow$  y = the high sibling

 $\Rightarrow$  x = the high child of the high sibling

 We can now think of the subtree rooted at z as consisting of these 3 nodes plus their 4 subtrees 3 4 Problem! 8 1 5 0 0

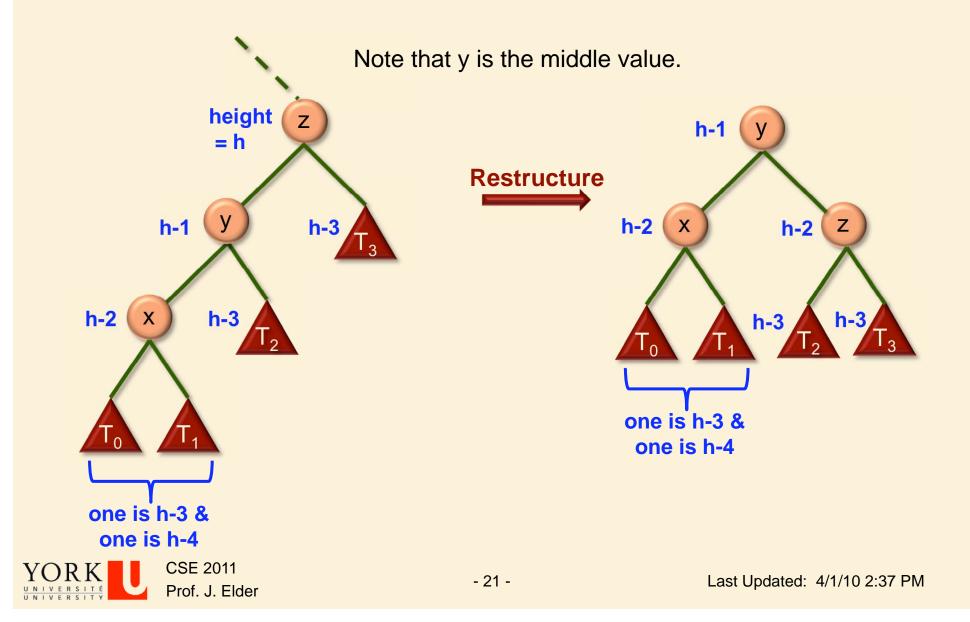
height = 4



3

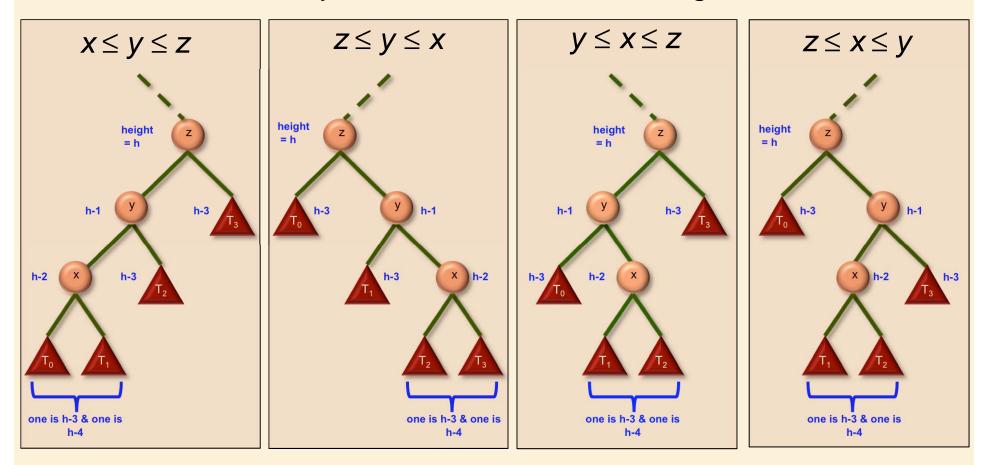
0

### Insertion: Trinode Restructuring Example



### Insertion: Trinode Restructuring - 4 Cases

There are 4 different possible relationships between the three nodes x, y and z before restructuring:



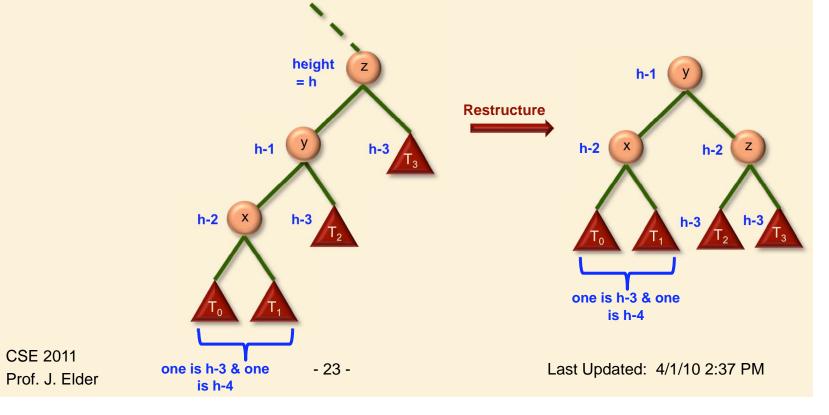


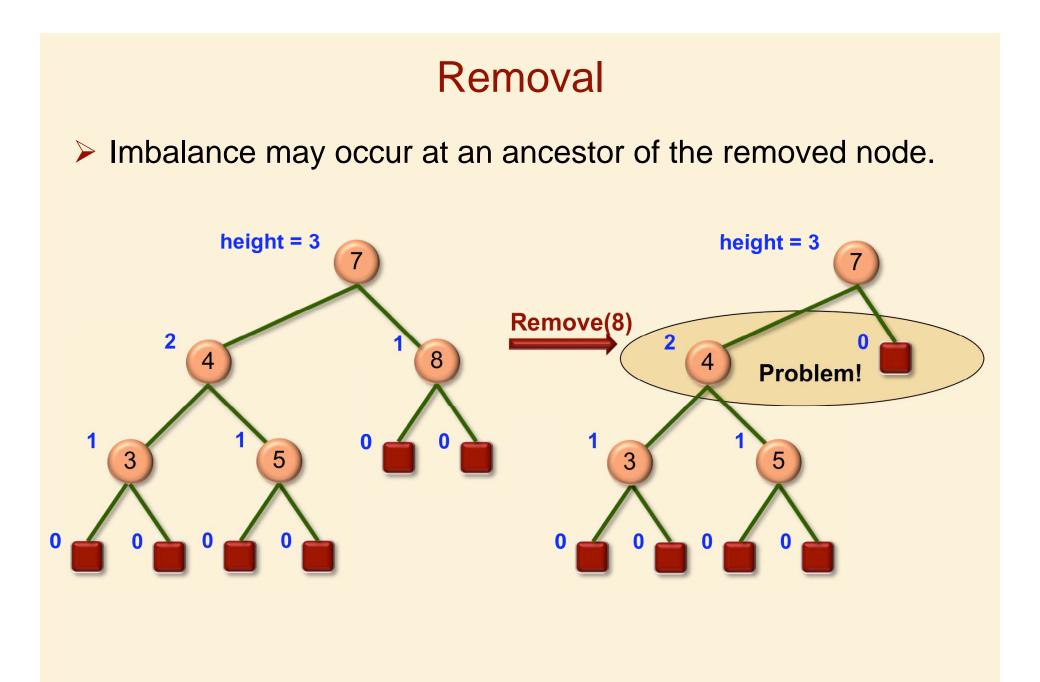
#### Insertion: Trinode Restructuring - The Whole Tree

> Do we have to repeat this process further up the tree?

#### > No!

- □ The tree was balanced before the insertion.
- □ Insertion raised the height of the subtree by 1.
- □ Rebalancing lowered the height of the subtree by 1.
- □ Thus the whole tree is still balanced.





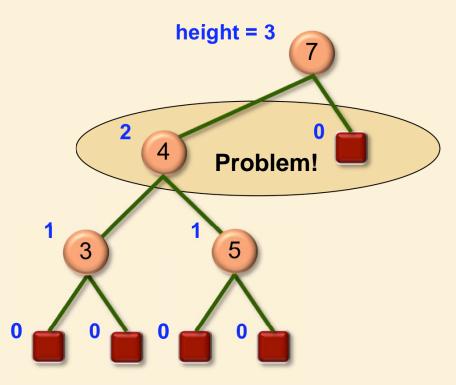
- 24 -

CSE 2011

Prof. J. Elder

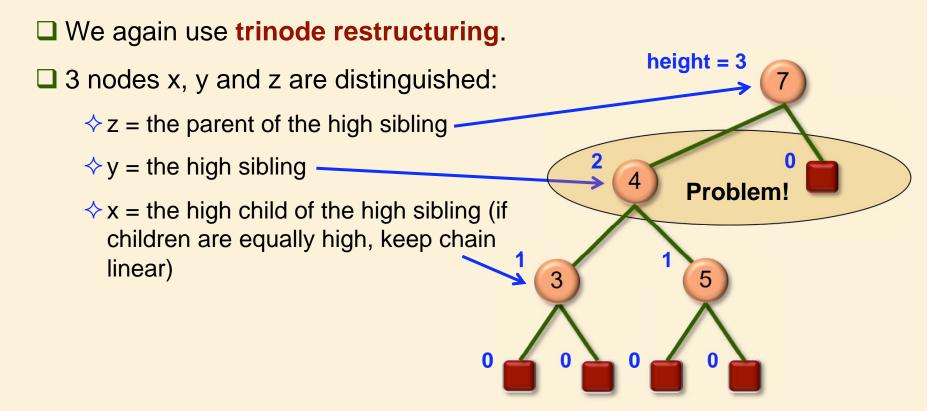
#### > Step 1: Search

□ Starting at the location of the removed node, traverse toward the root until an imbalance is discovered.

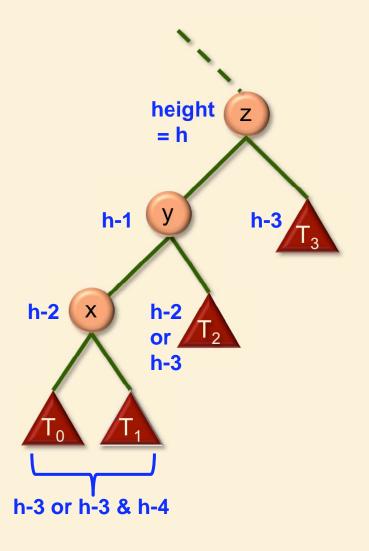




#### Step 2: Repair



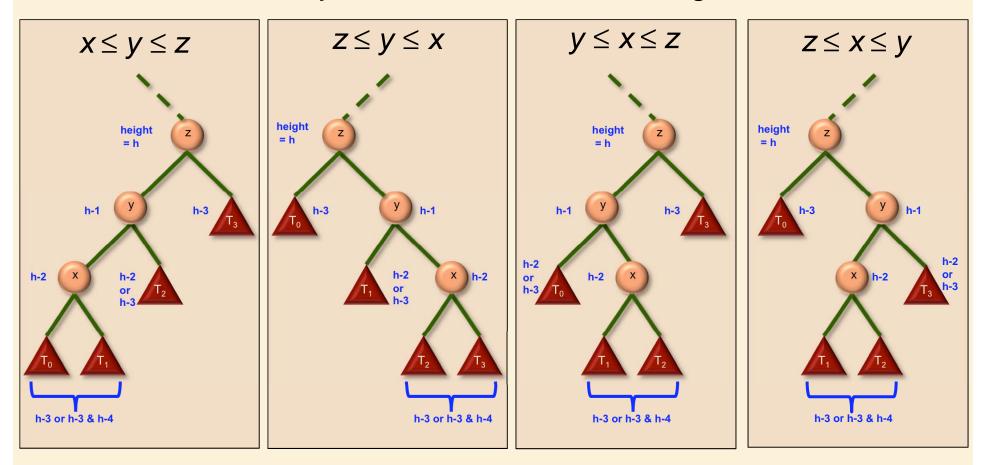
- Step 2: Repair
  - The idea is to rearrange these 3 nodes so that the middle value becomes the root and the other two becomes its children.
  - Thus the linear grandparent parent child structure becomes a triangular parent – two children structure.
  - Note that z must be either bigger than both x and y or smaller than both x and y.
  - Thus either x or y is made the root of this subtree, and z is lowered by 1.
  - ❑ Then the subtrees T<sub>0</sub> − T<sub>3</sub> are attached at the appropriate places.
  - Although the subtrees T<sub>0</sub> T<sub>3</sub> can differ in height by up to 2, after restructuring, sibling subtrees will differ by at most 1.



CSE 2011 Prof. J. Elder

### Removal: Trinode Restructuring - 4 Cases

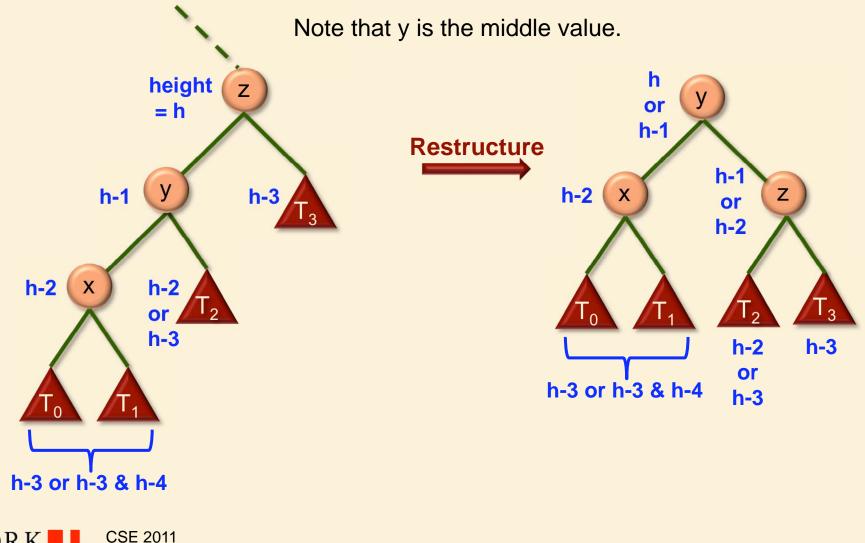
There are 4 different possible relationships between the three nodes x, y and z before restructuring:





CSE 2011 Prof. J. Elder

### Removal: Trinode Restructuring - Case 1



Prof. J. Elder

#### Step 2: Repair

- Unfortunately, trinode restructuring may reduce the height of the subtree, causing another imbalance further up the tree.
- Thus this search and repair process must be repeated until we reach the root.



# **Splay Trees**

- Self-balancing BST
- Invented by Daniel Sleator and Bob Tarjan
- Allows quick access to recently accessed elements
- Bad: worst-case O(n)
- Good: average (amortized) case O(log n)
- Often perform better than other BSTs in practice



D. Sleator



R. Tarjan

# Splaying

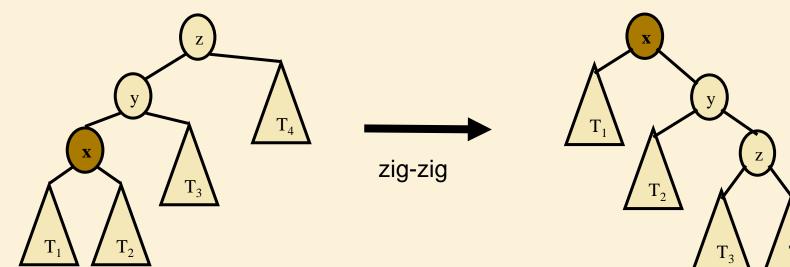
- Splaying is an operation performed on a node that iteratively moves the node to the root of the tree.
- In splay trees, each BST operation (find, insert, remove) is augmented with a splay operation.
- In this way, recently searched and inserted elements are near the top of the tree, for quick access.

# 3 Types of Splay Steps

- Each splay operation on a node consists of a sequence of splay steps.
- Each splay step moves the node up toward the root by 1 or 2 levels.
- > There are 2 types of step:
  - Zig-Zig
  - Zig-Zag
  - 🗆 Zig

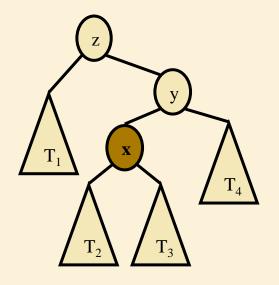
# Zig-Zig

- Performed when the node x forms a linear chain with its parent and grandparent.
  - □ i.e., right-right or left-left

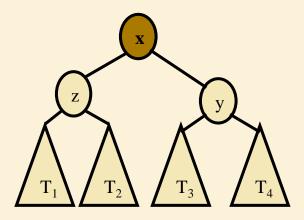


# **Zig-Zag**

- Performed when the node x forms a non-linear chain with its parent and grandparent
  - □ i.e., right-left or left-right



zig-zag

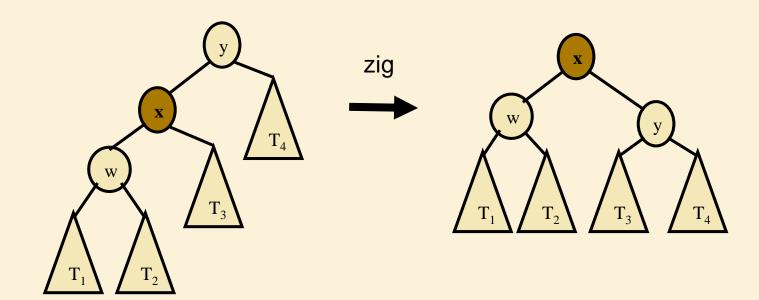




# Zig

#### Performed when the node x has no grandparent

□ i.e., its parent is the root





Prof. J. Elder

## Topic 2. Sorting



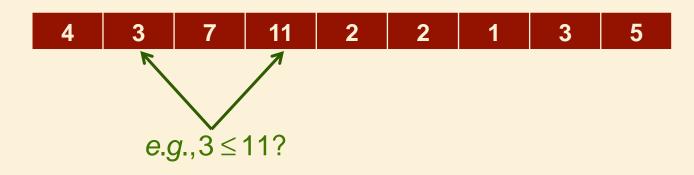
# Sorting Algorithms

- Comparison Sorting
  - Selection Sort
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Heap Sort
  - Quick Sort
- Linear Sorting
  - Counting Sort
  - Radix Sort
  - Bucket Sort



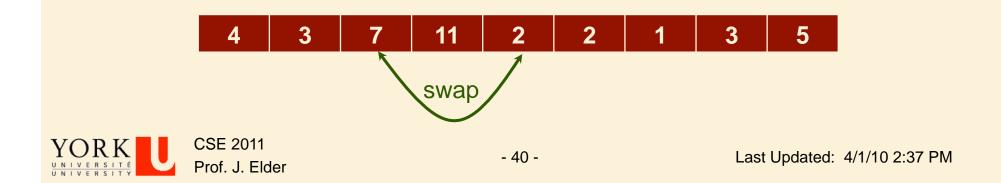
## **Comparison Sorts**

- Comparison Sort algorithms sort the input by successive comparison of pairs of input elements.
- Comparison Sort algorithms are very general: they make no assumptions about the values of the input elements.



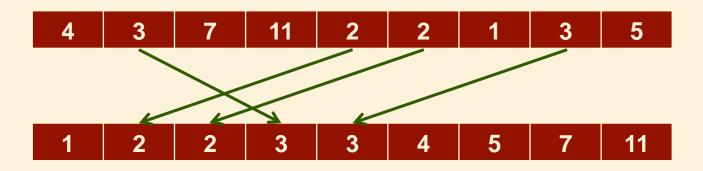
#### Sorting Algorithms and Memory

- Some algorithms sort by swapping elements within the input array
- Such algorithms are said to sort in place, and require only O(1) additional memory.
- Other algorithms require allocation of an output array into which values are copied.
- These algorithms do not sort in place, and require O(n) additional memory.



#### **Stable Sort**

- > A sorting algorithm is said to be **stable** if the ordering of identical keys in the input is preserved in the output.
- $\succ$  The stable sort property is important, for example, when entries with identical keys are already ordered by another criterion.
- (Remember that stored with each key is a record containing some useful information.)





Prof. J. Elder

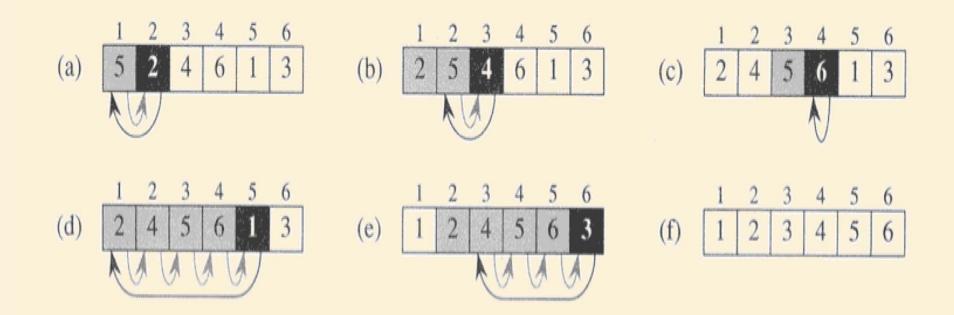
## **Selection Sort**

- Selection Sort operates by first finding the smallest element in the input list, and moving it to the output list.
- It then finds the next smallest value and does the same.
- It continues in this way until all the input elements have been selected and placed in the output list in the correct order.
- Note that every selection requires a search through the input list.
- Thus the algorithm has a nested loop structure
- Selection Sort Example

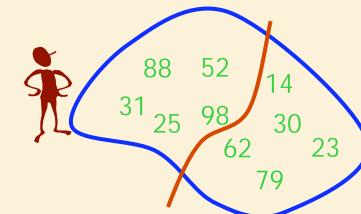
## Bubble Sort

- Bubble Sort operates by successively comparing adjacent elements, swapping them if they are out of order.
- At the end of the first pass, the largest element is in the correct position.
- > A total of n passes are required to sort the entire array.
- Thus bubble sort also has a nested loop structure
- Bubble Sort Example

#### **Example: Insertion Sort**



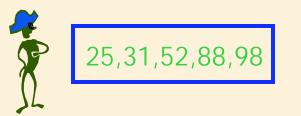
#### Merge Sort

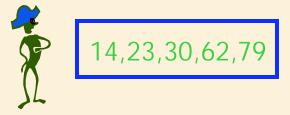


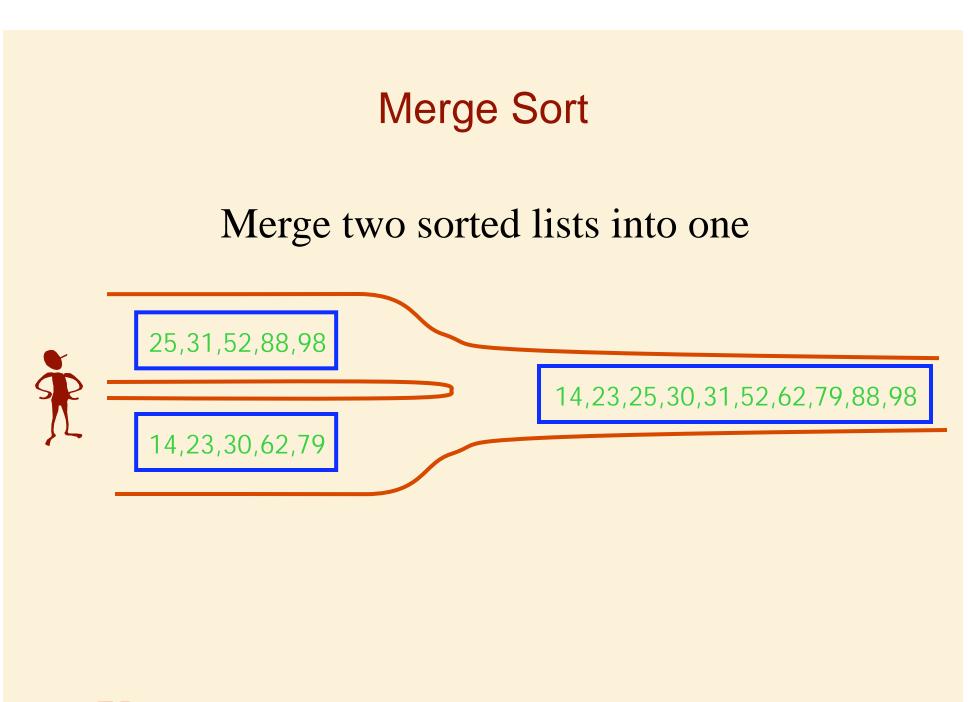
Split Set into Two (no real work)

# Get one friend to sort the first half.

Get one friend to sort the second half.





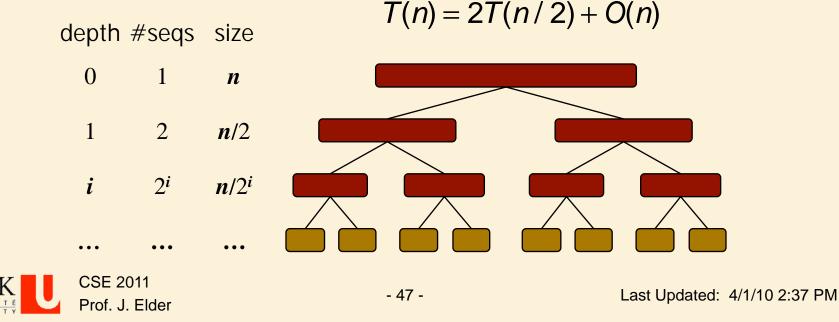


#### Analysis of Merge-Sort

> The height h of the merge-sort tree is  $O(\log n)$ 

□ at each recursive call we divide in half the sequence,

- The overall amount or work done at the nodes of depth *i* is *O*(*n*)
   we partition and merge 2<sup>i</sup> sequences of size *n*/2<sup>i</sup>
   we make 2<sup>i+1</sup> recursive calls
- > Thus, the total running time of merge-sort is  $O(n \log n)$



## Heap-Sort Algorithm

- Build an array-based (max) heap
- Iteratively call removeMax() to extract the keys in descending order
- Store the keys as they are extracted in the unused tail portion of the array

## Heap-Sort Running Time

The heap can be built bottom-up in O(n) time

- Extraction of the ith element takes O(log(n i+1)) time (for downheaping)
- Thus total run time is

$$T(n) = O(n) + \sum_{i=1}^{n} \log(n - i + 1)$$
$$= O(n) + \sum_{i=1}^{n} \log i$$
$$\leq O(n) + \sum_{i=1}^{n} \log n$$
$$= O(n \log n)$$



## **Quick-Sort**

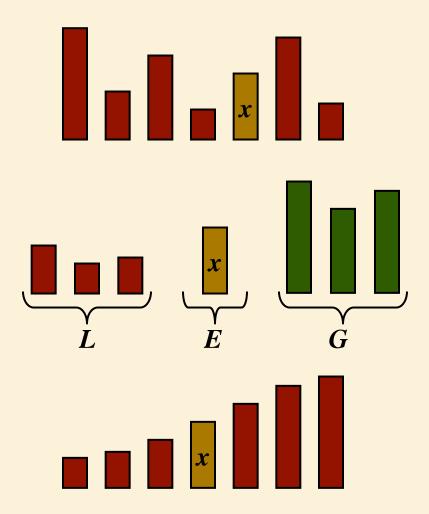
#### Quick-sort is a divide-andconquer algorithm:

Divide: pick a random element x (called a pivot) and partition S into

 $\diamond L \text{ elements less than } x$   $\diamond E \text{ elements equal to } x$   $\diamond G \text{ elements greater than } x$ 

 $\Box \operatorname{Recur}: \operatorname{Quick-sort} L \text{ and } G$ 

 $\Box Conquer: join L, E and G$ 





## The Quick-Sort Algorithm

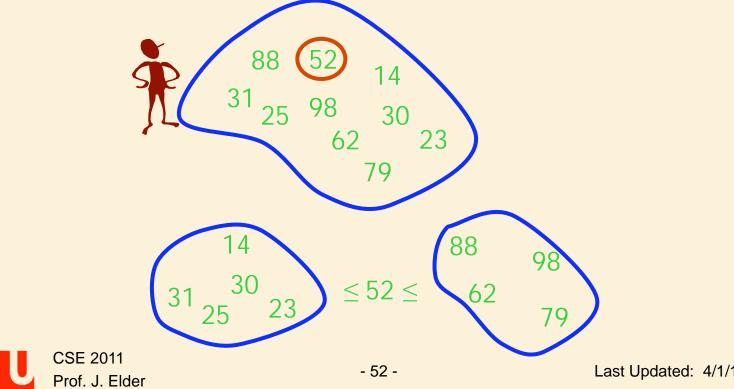
#### Algorithm QuickSort(S)

```
if S.size() > 1
(L, E, G) = Partition(S)
QuickSort(L)
QuickSort(G)
S = (L, E, G)
```

#### **In-Place Quick-Sort**

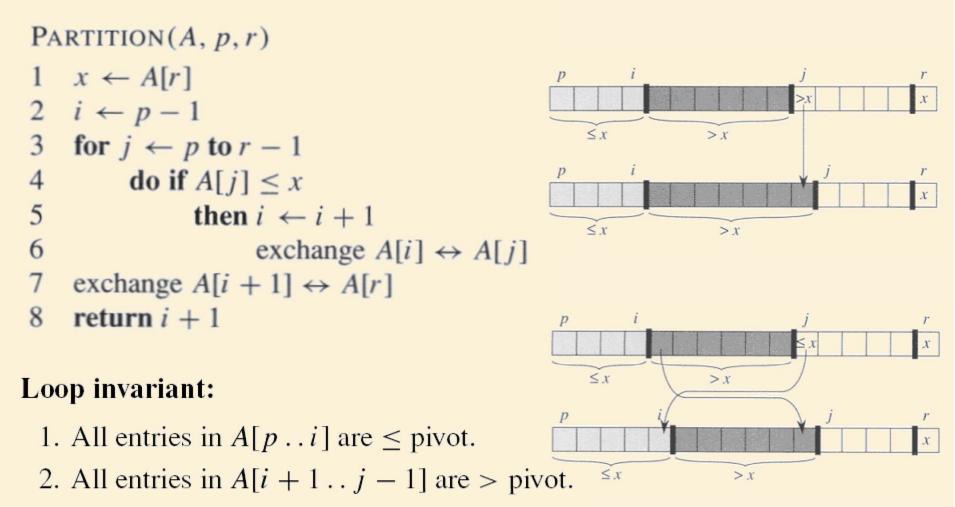
> Note: Use the lecture slides here instead of the textbook implementation (Section 11.2.2)

> Partition set into two using randomly chosen pivot





#### Maintaining Loop Invariant



#### The In-Place Quick-Sort Algorithm

```
Algorithm QuickSort(A, p, r)
```

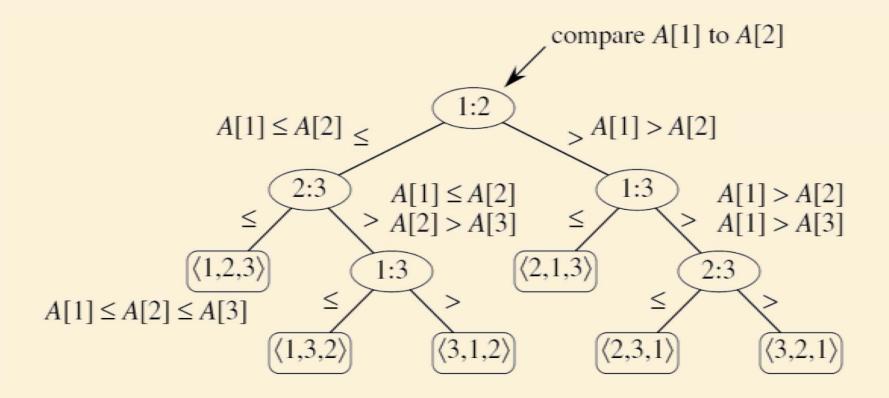
```
if p < r
    q = Partition(A, p, r)
    QuickSort(A, p, q - 1)
    QuickSort(A, q + 1, r)
```



# Summary of Comparison Sorts

| Algorithm | Best<br>Case   | Worst<br>Case  | Average<br>Case | In<br>Place | Stable | Comments                                                   |
|-----------|----------------|----------------|-----------------|-------------|--------|------------------------------------------------------------|
| Selection | n <sup>2</sup> | n <sup>2</sup> |                 | Yes         | Yes    |                                                            |
| Bubble    | n              | n²             |                 | Yes         | Yes    |                                                            |
| Insertion | n              | n <sup>2</sup> |                 | Yes         | Yes    | Good if often almost sorted                                |
| Merge     | n log n        | n log n        |                 | No          | Yes    | Good for very large datasets that require swapping to disk |
| Неар      | n log n        | n log n        |                 | Yes         | No     | Best if guaranteed n log n required                        |
| Quick     | n log n        | n²             | n log n         | Yes         | No     | Usually fastest in practice                                |

Comparison Sort: Decision Trees
For a 3-element array, there are 6 external nodes.
For an n-element array, there are *n*! external nodes.





# **Comparison Sort**

- To store n! external nodes, a decision tree must have a height of at least [log n!]
- Worst-case time is equal to the height of the binary decision tree.

Thus  $T(n) \in \Omega(\log n!)$ where  $\log n! = \sum_{i=1}^{n} \log i \ge \sum_{i=1}^{\lfloor n/2 \rfloor} \log \lfloor n/2 \rfloor \in \Omega(n \log n)$ Thus  $T(n) \in \Omega(n \log n)$ 

#### Thus MergeSort & HeapSort are asymptotically optimal.



#### Linear Sorts?

Comparison sorts are very general, but are  $\Omega(n \log n)$ 

Faster sorting may be possible if we can constrain the nature of the input.



# CountingSort

Input: () () Output: Index: 10 11 12 13 14 15 16 17 18 () Value v: Location of next record with digit v.

# Algorithm: Go through the records in order putting them where they go.



# CountingSort

Input: () Output: () Index: 10 11 12 13 14 15 16 17 18 Value v: () Location of next record with digit v.

# Algorithm: Go through the records in order putting them where they go.



CSE 2011 Prof. J. Elder

# RadixSort

| 344 |                | 333                                 |                          | 2 24  |  |
|-----|----------------|-------------------------------------|--------------------------|-------|--|
| 125 | ~              | 143                                 | ~                        | 1 25  |  |
| 333 | Sort wrt which | 243                                 | Sort wrt which           | 2 25  |  |
| 134 | digit first?   | 344                                 | digit Second?            | 3 25  |  |
| 224 |                | 134                                 |                          | 3 33  |  |
| 334 | The least      | 224                                 | The next least           | 1 34  |  |
| 143 | significant.   | 334                                 | significant.             | 3 34  |  |
| 225 |                | 125                                 |                          | 1 43  |  |
| 325 |                | 225                                 |                          | 2 43  |  |
| 243 |                | 325                                 |                          | 3 4 4 |  |
| RK  | CSE 2011       | 47                                  | Is sorted wrt least sig. | C     |  |
|     | Prof. J. Elder | - 61 - Last Updated: 4/1/10 2:37 PM |                          |       |  |



### RadixSort





Is sorted wrt first i+1 digits.

These are in the correct order because sorted wrt high order digit

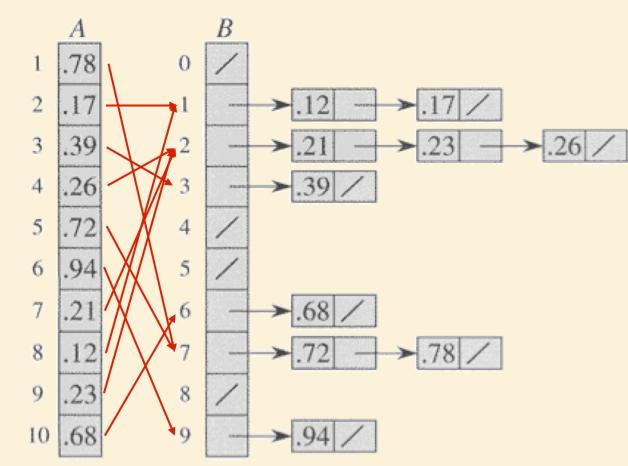
### **Example 3. Bucket Sort**

- > Applicable if input is constrained to finite interval, e.g., [0...1).
- If input is random and uniformly distributed, expected run time is  $\Theta(n)$ .



#### **Bucket Sort**

insert A[i] into list  $B[\lfloor n \cdot A[i] \rfloor]$ 





CSE 2011 Prof. J. Elder

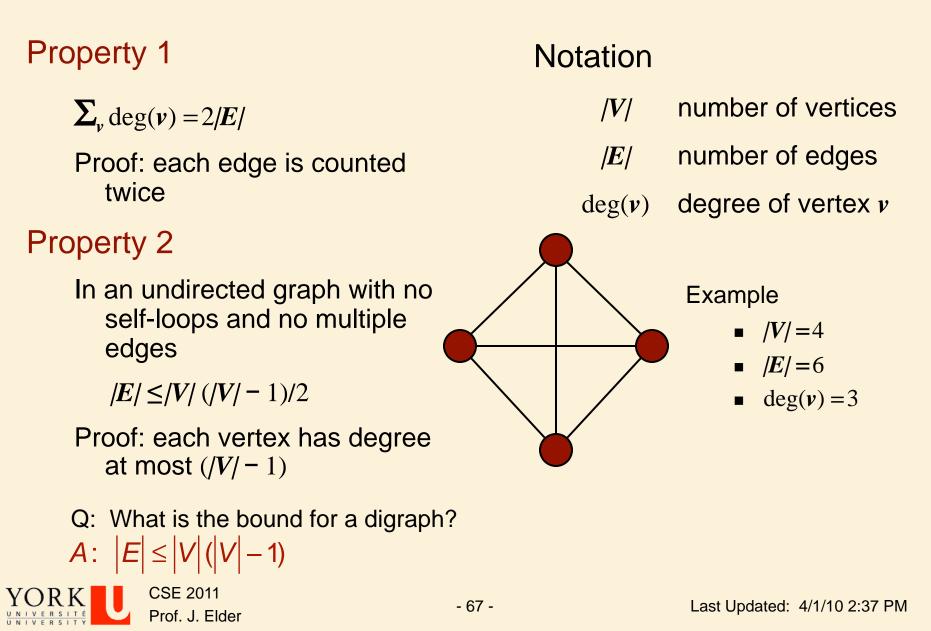
# Topic 3. Graphs



# Graphs

- Definitions & Properties
- Implementations
- Depth-First Search
- Topological Sort
- Breadth-First Search
- Weighted Graphs
- Single-Source Shortest Path on DAGs
- General Single-Source Shortest Path (Dijkstra's Algorithm)

#### **Properties**



## Main Methods of the (Undirected) Graph ADT

- Vertices and edges
  - are positions
  - store elements

#### Accessor methods

- endVertices(e): an array of the two endvertices of e
- opposite(v, e): the vertex opposite to v on e
- areAdjacent(v, w): true iff v and w are adjacent
- replace(v, x): replace element at vertex v with x
- replace(e, x): replace element at edge e with x

#### Update methods

- insertVertex(o): insert a vertex storing element o
- insertEdge(v, w, o): insert an edge (v,w) storing element o
- removeVertex(v): remove vertex v (and its incident edges)
- □ removeEdge(e): remove edge e

#### Iterator methods

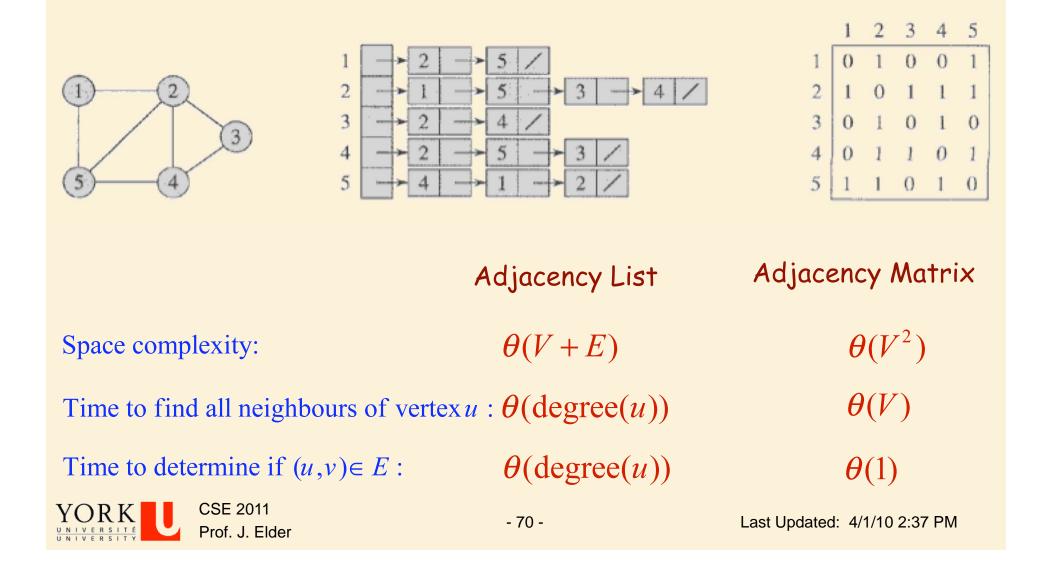
- incidentEdges(v): edges incident to v
- vertices(): all vertices in the graph
- dges(): all edges in the graph

#### **Running Time of Graph Algorithms**

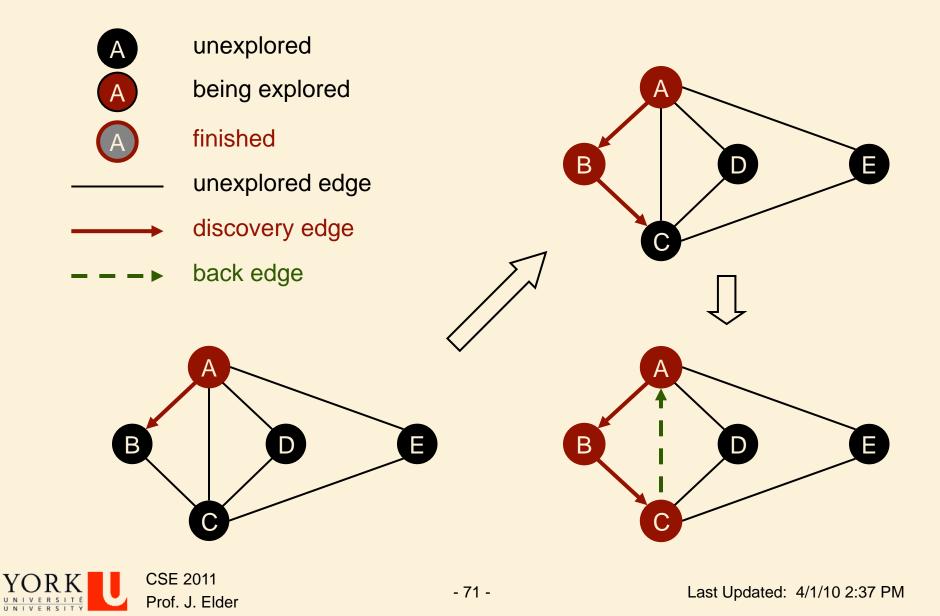
Running time often a function of both |V| and |E|.

For convenience, we sometimes drop the |. | in asymptotic notation, e.g. O(V+E).

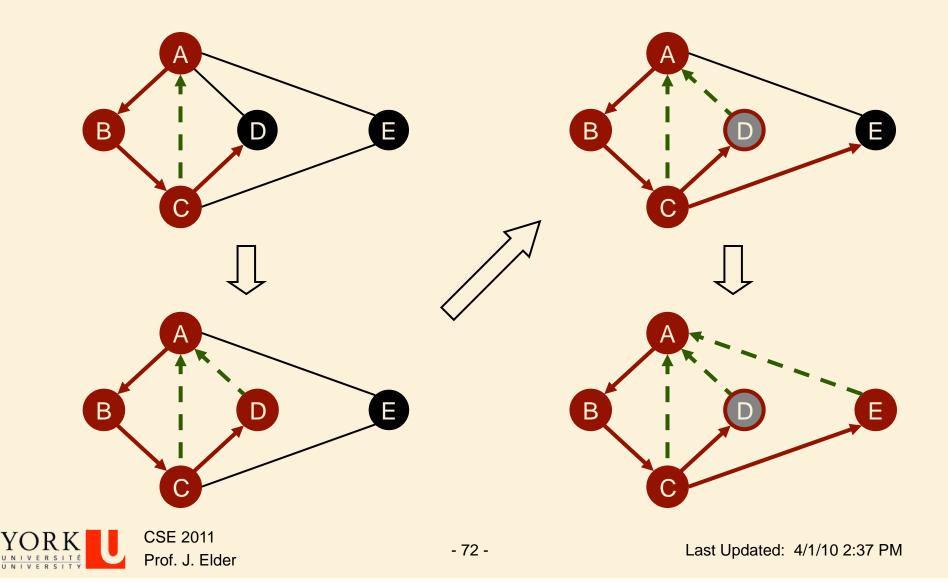
#### Implementing a Graph (Simplified)



### DFS Example on Undirected Graph

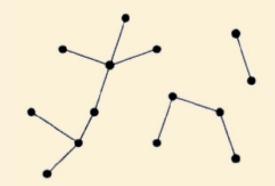


## Example (cont.)



#### **DFS Algorithm Pattern**

DFS(G) Precondition: G is a graph Postcondition: all vertices in G have been visited for each vertex  $u \in V[G]$ color[u] = BLACK //initialize vertex for each vertex  $u \in V[G]$ if color[u] = BLACK //as yet unexplored DFS-Visit(u)







## **DFS Algorithm Pattern**

```
DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
        colour[u] \leftarrow RED
        for each v \in \operatorname{Adj}[u] //explore edge (u, v)
                                                          total work
= \sum_{v} |Adj[v]| = \theta(E)
                 if color[v] = BLACK
                         DFS-Visit(v)
        colour[u] \leftarrow GRAY
```

Thus running time =  $\theta(V + E)$ (assuming adjacency list structure)

#### Other Variants of Depth-First Search

#### The DFS Pattern can also be used to

- Compute a forest of spanning trees (one for each call to DFSvisit) encoded in a predecessor list  $\pi[u]$
- Label edges in the graph according to their role in the search (see textbook)
  - ♦ Tree edges, traversed to an undiscovered vertex
  - Forward edges, traversed to a descendent vertex on the current spanning tree
  - $\Rightarrow$  **Back edges**, traversed to an ancestor vertex on the current spanning tree
  - Cross edges, traversed to a vertex that has already been discovered, but is not an ancestor or a descendent



### DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

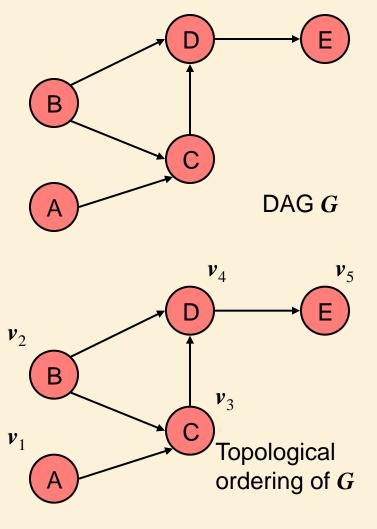
**v**<sub>1</sub>, ..., **v**<sub>n</sub>

of the vertices such that for every edge  $(v_i, v_j)$ , we have i < j

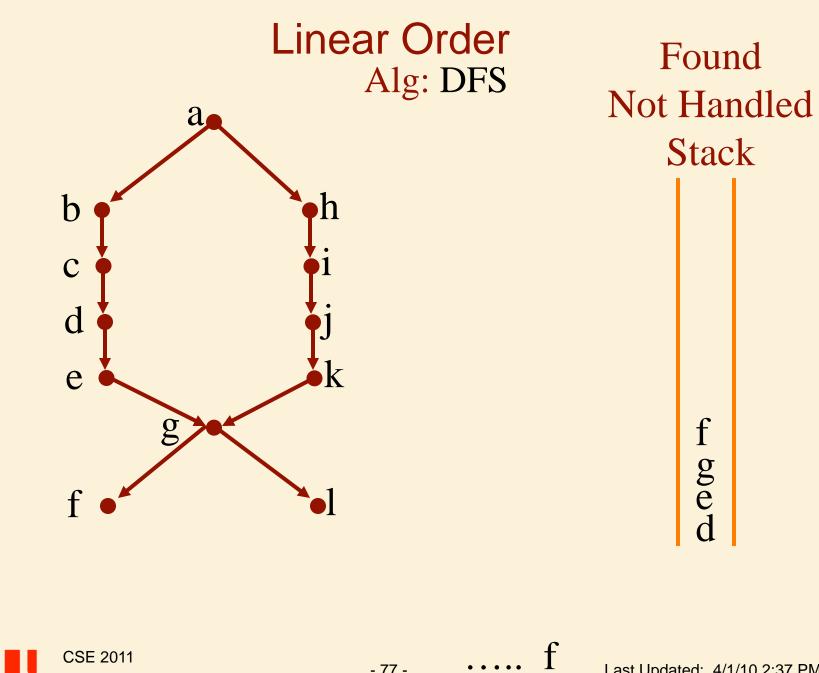
Example: in a task scheduling digraph, a topological ordering is a task sequence that satisfies the precedence constraints

#### Theorem

A digraph admits a topological ordering if and only if it is a DAG

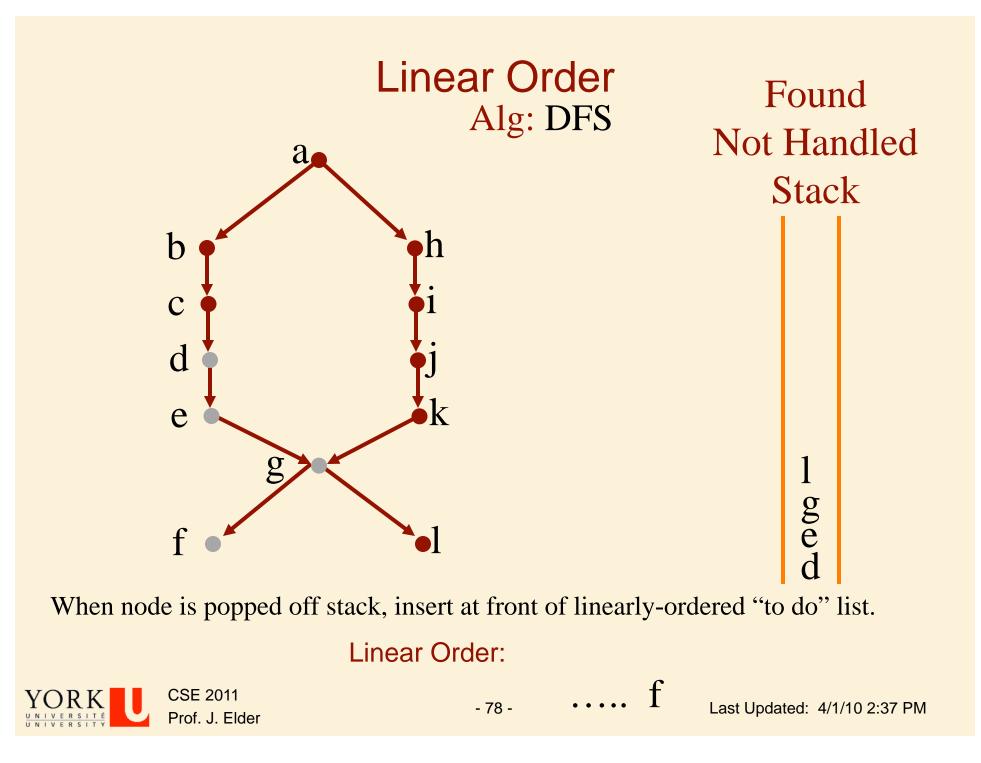


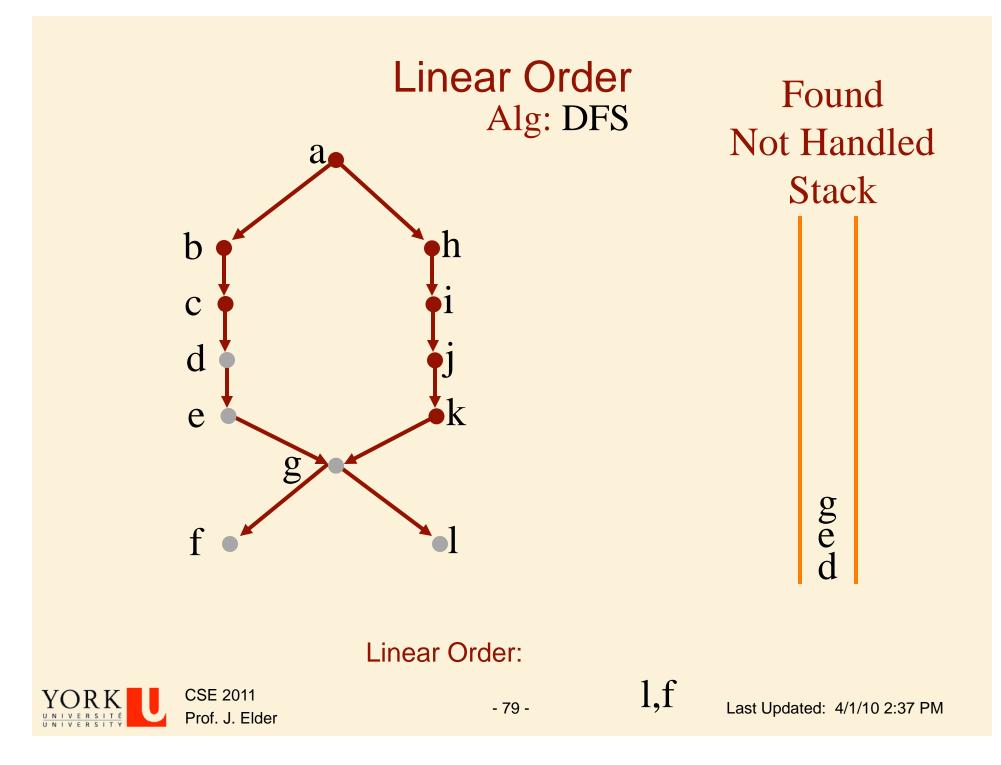




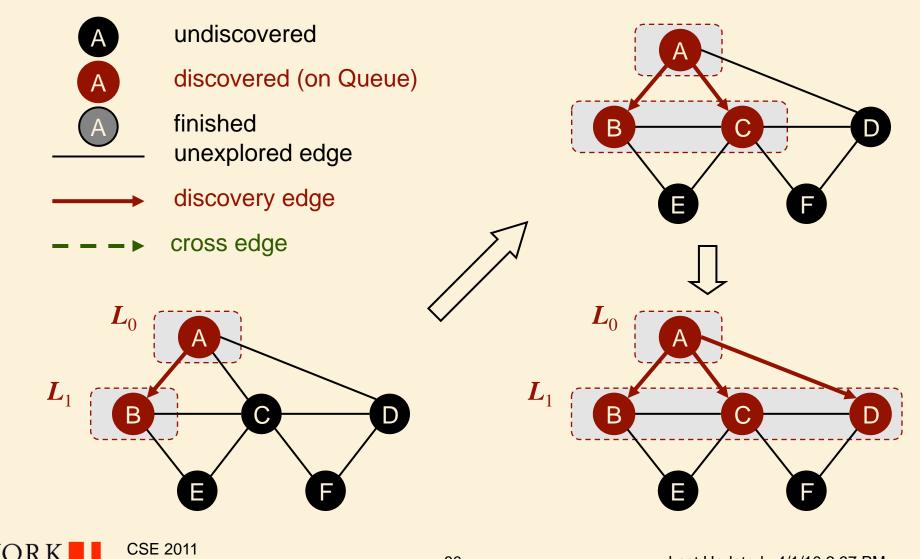
CSE 2011 **DRK** Prof. J. Elder

- 77 -



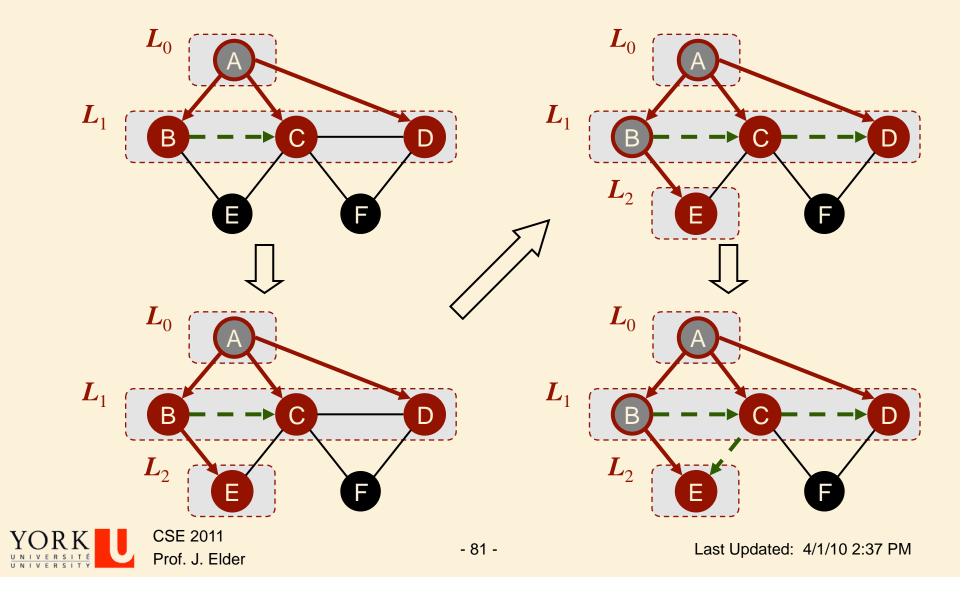


#### **BFS Example**

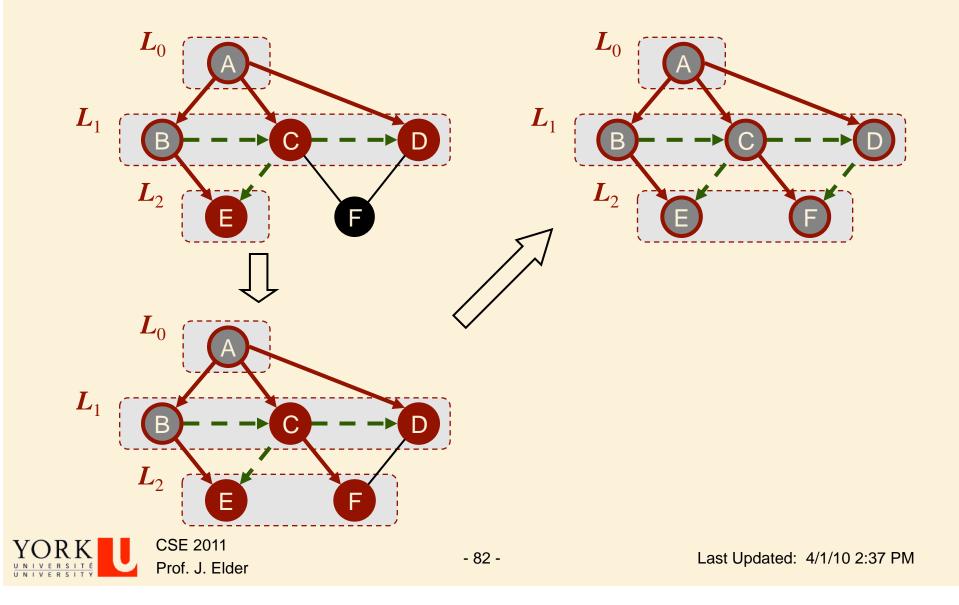


Prof. J. Elder

#### BFS Example (cont.)



#### BFS Example (cont.)



## Analysis

- $\succ$  Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled three times
  - once as BLACK (undiscovered)

once as RED (discovered, on queue)

□ once as GRAY (finished)

- $\succ$  Each edge is considered twice (for an undirected graph)
- $\succ$  Each vertex is inserted once into a sequence  $L_i$
- $\succ$  Thus BFS runs in O(/V/+/E/) time provided the graph is represented by an adjacency list structure



## BFS Algorithm with Distances and Predecessors

```
Precondition: G is a graph, s is a vertex in G
  Postcondition: d[u] = shortest distance \delta[u] and
  \pi[u] = predecessor of u on shortest paths from s to each vertex u in G
           for each vertex u \in V[G]
                    d[u] \leftarrow \infty
                    \pi[u] \leftarrow \text{null}
                    color[u] = BLACK //initialize vertex
           colour[s] \leftarrow RED
           d[s] \leftarrow 0
           Q.enqueue(s)
           while \mathbf{Q} \neq \emptyset
                    u \leftarrow Q.dequeue()
                    for each v \in \operatorname{Adi}[u] //explore edge (u, v)
                             if color[v] = BLACK
                                      colour[v] \leftarrow RED
                                      d[v] \leftarrow d[u] + 1
                                      \pi[v] \leftarrow u
                                      Q.enqueue(v)
                    colour[u] \leftarrow GRAY
CSE 2011
```



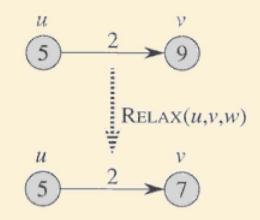
## Single-Source (Weighted) Shortest Paths

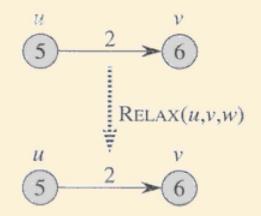


#### Relaxing an edge

Can we improve shortest-path estimate for v by first going to u and then following edge (u,v)?

```
\begin{aligned} \mathsf{RELAX}(\mathsf{u},\,\mathsf{v},\,\mathsf{w}) \\ & \text{ if } \mathsf{d}[\mathsf{v}] > \mathsf{d}[\mathsf{u}] + \mathsf{w}(\mathsf{u},\,\mathsf{v}) \text{ then} \\ & \mathsf{d}[\mathsf{v}] \leftarrow \mathsf{d}[\mathsf{u}] + \mathsf{w}(\mathsf{u},\,\mathsf{v}) \\ & \pi[\mathsf{v}] \leftarrow \mathsf{u} \end{aligned}
```







CSE 2011 Prof. J. Elder

#### General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

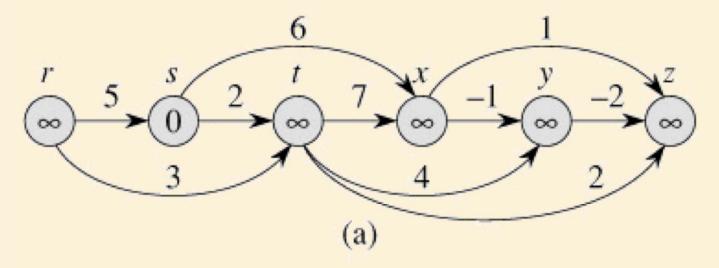
2. Relax Edges

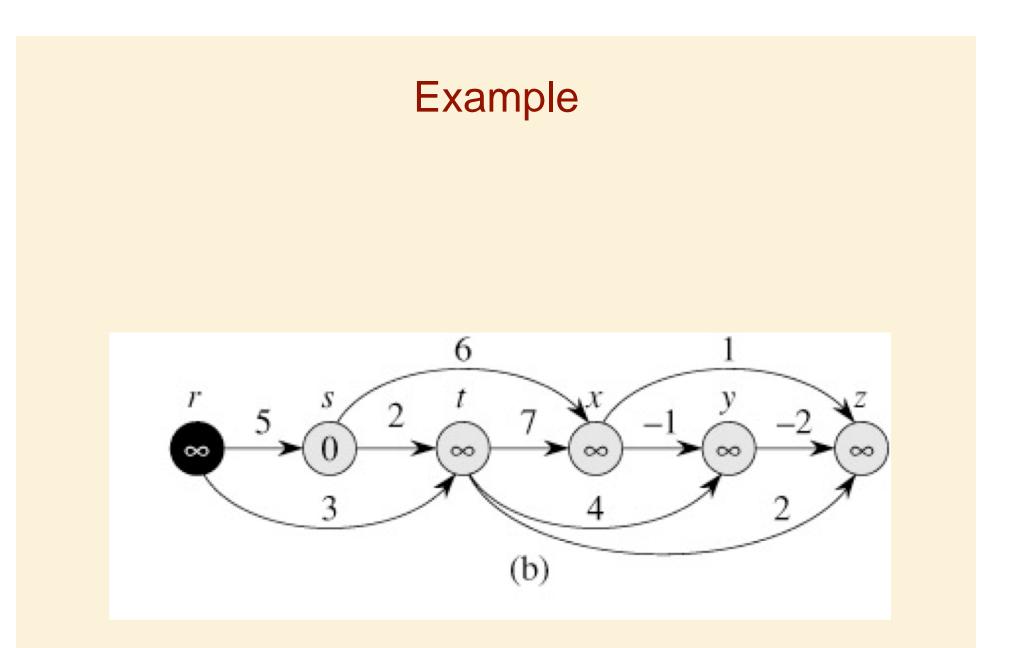
Algorithms differ in the order in which edges are taken and how many times each edge is relaxed.

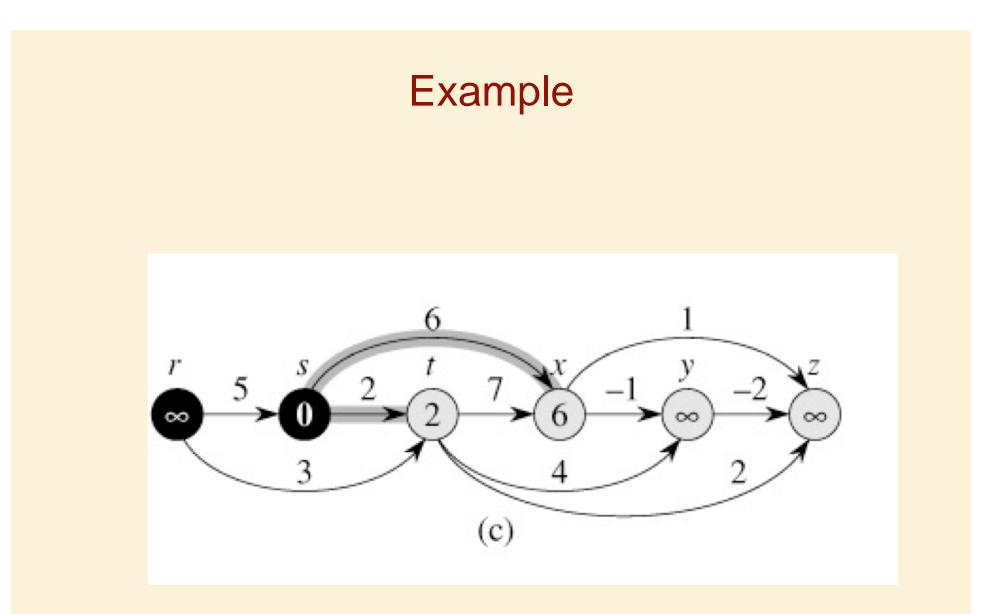


# Example: Single-source shortest paths in a directed acyclic graph (DAG)

- Since graph is a DAG, we are guaranteed no negative-weight cycles.
- > Thus algorithm can handle negative edges









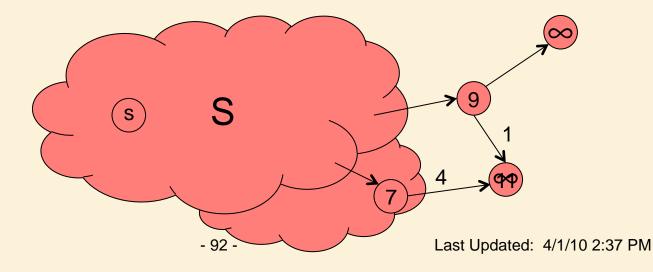
#### Example 2. Single-Source Shortest Path on a General Graph (May Contain Cycles)

This is fundamentally harder, because the first paths we discover may not be the shortest (not monotonic).



#### Dijkstra's Algorithm: Operation

- We grow a "cloud" S of vertices, beginning with s and eventually covering all the vertices
- > We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud S and its adjacent vertices
- > At each step
  - □ We add to the cloud S the vertex u outside the cloud with the smallest distance label, d(u)
  - $\Box$  We update the labels of the vertices adjacent to u





#### Dijkstra's algorithm: Analysis

- Analysis:
  - Using minheap, queue operations takes O(logV) time

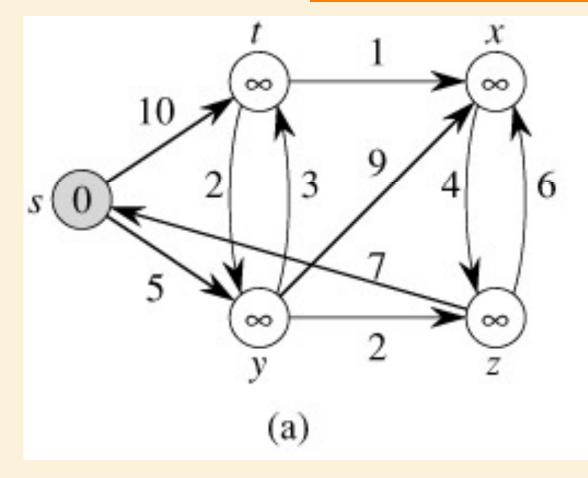
```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s) O(V)
1
2 \quad S \leftarrow \emptyset
3 Q \leftarrow V[G]
4
   while Q \neq \emptyset
5
          do u \leftarrow \text{EXTRACT-MIN}(Q) O(\log V) \times O(V) iterations
6
              S \leftarrow S \cup \{u\}
7
              for each vertex v \in Adj[u]
8
                   do RELAX(u, v, w)
                                                O(\log V) \times O(E) iterations
```

#### $\rightarrow$ Running Time is $O(E \log V)$



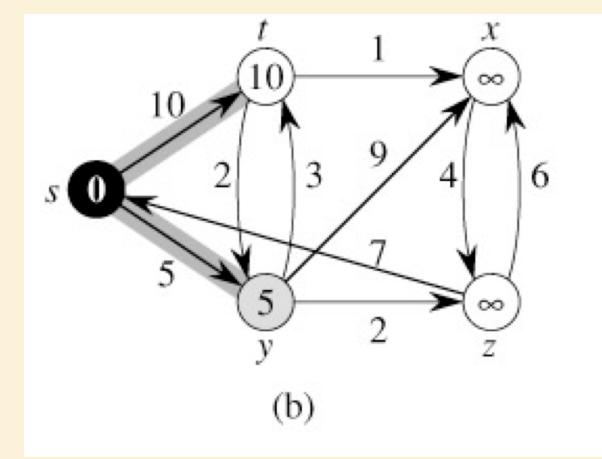
#### Example

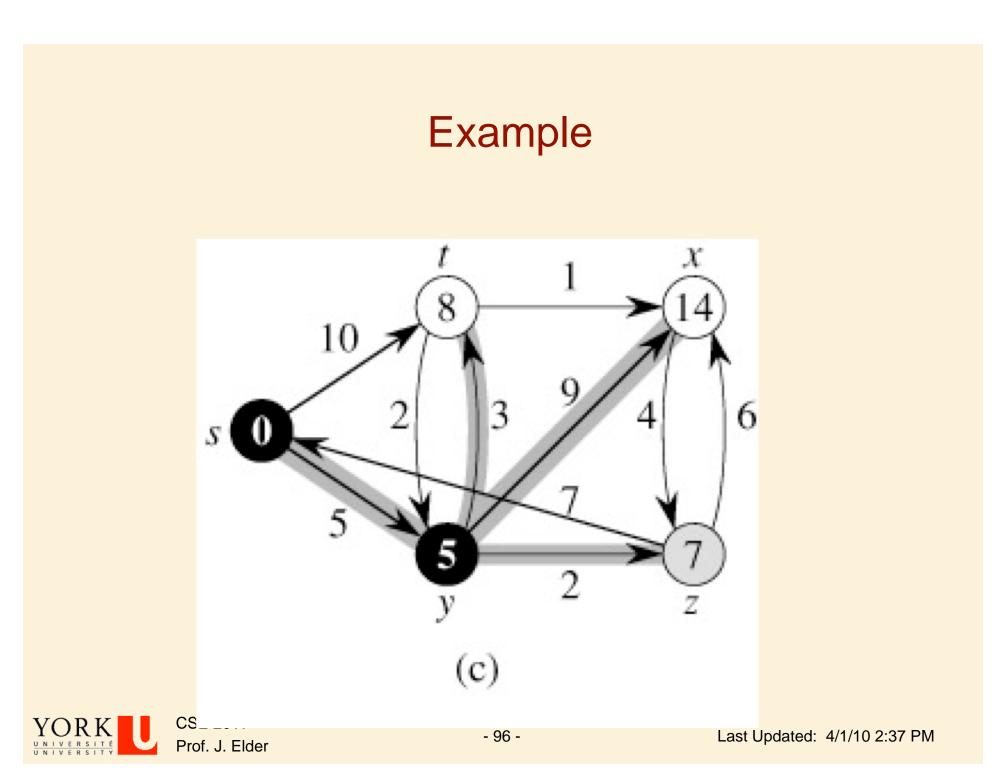
White  $\Leftrightarrow$  Vertex  $\in Q = V - S$ Grey  $\Leftrightarrow$  Vertex = min(Q) Black  $\Leftrightarrow$  Vertex  $\in S$ , Off Queue



Key:

### Example





## Example

