Final Exam

» 2:00 - 5:00 pm Fri Apr 16 CSE B
» Closed Book
» Format similar to midterm

» Wil cover whole course, with emphasis on material after
midterm (binary search trees, sorting, graphs)
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Suggested Study Strategy

» Review and understand the slides.

» Read the textbook, especially where concepts and
methods are not yet clear to you.

» Do all of the practice problems | provide (available early
next week).

» Do extra practice problems from the textbook.

» Review the midterm and solutions for practice writing this
kind of exam.

» Practice writing clear, succint pseudocode!

» See me or one of the TAs if there Is anything that is still
not clear.
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Assistance

» Regular office hours will not be held

» You may see either me or one of the TAs by
appointment

» Please note that | will be away at a conference Apr 15
-16 (until the exam)
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End of Term Review

CSE 2011
X.(VDEBS.KE ' Bt J. Sl -4 - Last Updated: 4/1/10 2:37 PM

IIIIIIIIII




Summary of Topics

1. Binary Search Trees
2. Sorting
3. Graphs
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Topic 1. Binary Search Trees
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Binary Search Trees

» Insertion

» Deletion

» AVL Trees
» Splay Trees
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Binary Search Trees

» A binary search tree is a binary tree storing key-value entries at its
iInternal nodes and satisfying the following property:

d Let u, v, and w be three nodes such that u is in the left subtree of v and w is
in the right subtree of v. We have key(u) < key(v) < key(w)

» The textbook assumes that external nodes are ‘placeholders’. they do
not store entries (makes algorithms a little simpler)

» An inorder traversal of a binary search trees visits the keys in
Increasing order

» Binary search trees are ideal for dictionaries with ordered keys.
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Binary Search Tree

All nodes in left subtree = Any node < All nodes In right subtree

55 71
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Search: Define Step
» Cut sub-tree in half.

» Determine which half the key would be iIn.
» Keep that half.

If key <root, Ifkey =root, If key > root,
then key is then key is then key is
in left half. found in right half.
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Insertion

» To perform operation insert(k, 0), we search for key k (using
TreeSearch)

» Suppose k is not already In the tree, and let w be the leaf
reached by the search

» We insert k at node w and expand w into an internal node

» Example: insert 5
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Insertion
» Suppose k is already In the tree, at node v.

» We continue the downward search through v, and let w be
the leaf reached by the search

» Note that it would be correct to go either left or right at v.
We go left by convention.

» We insert k at node w and expand w into an internal node

» Example: insert 6
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Deletion

» To perform operation remove(k), we search for key k
» Suppose key k is in the tree, and let v be the node storing k

» If node v has a leaf child w, we remove v and w from the tree
with operation removeExternal(w), which removes w and its
parent

» Example: remove 4
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Deletion (cont.)

» Now consider the case where the key k to be removed is stored at a
node v whose children are both internal

] we find the internal node w that follows v in an inorder traversal
O we copy key(w) into node v

[ we remove node w and its left child z (which must be a leaf) by means of
operation removeExternal(z)

» Example: remove 3

~
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Performance
» Consider a dictionary with n items implemented by means of
a binary search tree of height h
[ the space used is O(n)

L methods find, insert and remove take O(h) time

» The height h is O(n) in the worst case and O(log n) in the
best case

» It is thus worthwhile to balance the tree (next topic)!

e
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AVL Trees

» AVL trees are balanced.

» An AVL Tree Is a binary search tree in which the
heights of siblings can differ by at most 1.

<— height
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Height of an AVL Tree

» Claim: The height of an AVL tree storing n keys is O(log n).
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Insertion

» Imbalance may occur at any ancestor of the inserted node.

height = 3 height = 4
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Insertion: Rebalancing Strategy
» Step 1: Search

O Starting at the inserted node, traverse toward
the root until an imbalance is discovered. height = 4

<~ \

oblem!
V4 7N
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Insertion: Rebalancing Strategy
» Step 2: Repalr

 The repair strategy is called trinode
restructuring. height = 4

3 nodes x, y and z are distinguishV
<>z = the parent of the high sibling 3
<y = the high sibling | |
<X = the high child of the high S|bI|ng

J We can now think of the subtree

rooted at z as consisting of these 3
nodes plus their 4 subtrees
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Insertion: Trinode Restructuring Example

\ Note that y is the middle value.

Restructure
B

oneis h-3 &

oneis h-4
\ J
oneis h-3 &

one is h-4
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Insertion: Trinode Restructuring - 4 Cases

» There are 4 different possible relationships between the
three nodes X, y and z before restructuring:

X<y<z

N\
N\

height
=h

one is h-3 & one is
h-4

height
=h

Z<y <X

one is h-3 & one is
h-4

y<x<z

N\
N\

height
=h

h-3 h-2 X

one is h-3 & one is
h-4

height

=h

one is h-3 & one is
h-4
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Insertion: Trinode Restructuring - The Whole Tree

» Do we have to repeat this process further up the tree?
» No!

L The tree was balanced before the insertion.
O Insertion raised the height of the subtree by 1.
O Rebalancing lowered the height of the subtree by 1.

U Thus the whole tree is still balanced.

Restructure

_)

oneis h-3 & one
is h-4
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Removal

» Imbalance may occur at an ancestor of the removed node.

height =3 height =3

1 1°
3 3}
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Removal: Rebalancing Strateqgy
» Step 1: Search

[ Starting at the location of the removed node,
traverse toward the root until an imbalance is
discovered.

height =3

0
'/ Problem!
a

1 1
3 L5

CSE 2011
YORK ' -25- Last Updated: 4/1/10 2:37 PM
““““““““ ¢ Prof. J. Elder

VVVVVVVVVV




Removal: Rebalancing Strategy
» Step 2: Repalr

 We again use trinode restructuring.

. : height =3
[ 3 nodes X, y and z are distinguished: ° 7
<{z = the parent of the high sibling

<y = the high sibling 0

<X = the high child of the high sibling (if
children are equally high, keep chain

linear) \1 ,
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Removal: Rebalancing Strategy

» Step 2: Repair

O The idea is to rearrange these 3 nodes so
that the middle value becomes the root
and the other two becomes its children.

O Thus the linear grandparent — parent —
child structure becomes a triangular
parent — two children structure.

L Note that z must be either bigger than
both x and y or smaller than both x and

Y.

O Thus either x or y is made the root of this
subtree, and z is lowered by 1.

4 Then the subtrees T, — T, are attached at
the appropriate places.

d Although the subtrees T, — T; can differ in
height by up to 2, after restructuring,
sibling subtrees will differ by at most 1.
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Removal: Trinode Restructuring - 4 Cases

» There are 4 different possible relationships between the
three nodes X, y and z before restructuring:

X<y<z

N\
N\

height
=h

h-3 or h-3 & h-4

height
=h

Z<y <X

h-3

h-3 or h-3 & h-4

y<x<z

N\
N\

height
=h

h-3 or h-3 & h-4

height

h-3 or h-3 & h-4
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Removal: Trinode Restructuring - Case 1

\ Note that y is the middle value.

Restructure

\ ] h-2 h-3

| or
h-30rh-3&h-4 .o

\ J

|
h-3or h-3& h-4
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Removal: Rebalancing Strategy

» Step 2: Repair

O Unfortunately, trinode restructuring may
reduce the height of the subtree, causing
another imbalance further up the tree.

O Thus this search and repair process must
be repeated until we reach the root.
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Splay Trees

» Self-balancing BST
» Invented by Daniel Sleator and Bob Tarjan

» Allows quick access to recently accessed
elements

» Bad: worst-case O(n)
» Good: average (amortized) case O(log n)

» Often perform better than other BSTs in
practice
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Splaying
» Splaying is an operation performed on a node that

iteratively moves the node to the root of the tree.

» In splay trees, each BST operation (find, insert, remove)
IS augmented with a splay operation.

» In this way, recently searched and inserted elements are
near the top of the tree, for quick access.
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3 Types of Splay Steps

» Each splay operation on a node consists of a sequence
of splay steps.

» Each splay step moves the node up toward the root by 1
or 2 levels.
» There are 2 types of step:
4 Zig-Zig
4 Zig-Zag
d Zig
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Z19-Zig

» Performed when the node x forms a linear chain with its
parent and grandparent.

U 1.e., right-right or left-left

zig-zig
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Zig-Zag

» Performed when the node x forms a non-linear chain
with its parent and grandparent

U 1.e., right-left or left-right

Zig-zag
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ZIg
» Performed when the node x has no grandparent

U 1.e., its parent is the root
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Topic 2. Sorting
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Sorting Algorithms

» Comparison Sorting
 Selection Sort
1 Bubble Sort
O Insertion Sort
L Merge Sort
 Heap Sort
O Quick Sort

» Linear Sorting
O Counting Sort
[ Radix Sort
O Bucket Sort
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Comparison Sorts

» Comparison Sort algorithms sort the input by successive
comparison of pairs of input elements.

» Comparison Sort algorithms are very general: they
make no assumptions about the values of the input
elements.

e.g.,3<11?
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Sorting Algorithms and Memory

» Some algorithms sort by swapping elements within the
Input array

» Such algorithms are said to sort in place, and require
only O(1) additional memory.

» Other algorithms require allocation of an output array into
which values are copied.

» These algorithms do not sort in place, and require O(n)
additional memory.

swap
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Stable Sort

» A sorting algorithm is said to be stable if the ordering of
iIdentical keys In the input is preserved in the output.

» The stable sort property is important, for example, when
entries with identical keys are already ordered by
another criterion.

» (Remember that stored with each key is a record
containing some useful information.)
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Selection Sort

» Selection Sort operates by first finding the smallest
element in the input list, and moving it to the output list.

> It then finds the next smallest value and does the same.

» It continues in this way until all the input elements have
been selected and placed in the output list in the correct
order.

» Note that every selection requires a search through the
Input list.

» Thus the algorithm has a nested loop structure

» Selection Sort Example
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Bubble Sort

» Bubble Sort operates by successively comparing
adjacent elements, swapping them if they are out of
order.

» At the end of the first pass, the largest element is in the
correct position.

» A total of n passes are required to sort the entire array.
» Thus bubble sort also has a nested loop structure

» Bubble Sort Example
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Example: Insertion Sort

| 2 3 4 5 6 I 2 3 4 5 6 | 2 3 4 5 6
(a) |5 41613 (b) [N 613 (c) |24 8§ 113
Y A

. 3 4 5 6
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Merge Sort

‘ Split Set into Two
';E (no real work)

Get one friend to Get one friend to
sort the first half. sort the second half.

x x
| | | |

¥ ¥
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Merge Sort

Merge two sorted lists into one

‘ 25,31,52,88,98‘ \
I |

)

‘ 14,23,25,30,31,52,62,79,88,98

i

‘ 14,23,30,62,79‘ /
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Analysis of Merge-Sort

» The height h of the merge-sort tree is O(log n)
[ at each recursive call we divide in half the sequence,
» The overall amount or work done at the nodes of depth i is O(n)

O we partition and merge 2' sequences of size n/2!

O we make 2'*1 recursive calls

» Thus, the total running time of merge-sort is O(n log n)

T(n)=2T(n/2)+0O(n)

depth #seqs size

0 1 n
1 2 n/2
i 21 n/2!

YORK ' CSE 2011
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Heap-Sort Algorithm

» Build an array-based (max) heap

> Iteratively call removeMax() to extract the keys in
descending order

» Store the keys as they are extracted in the unused tall
portion of the array
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Heap-Sort Running Time

» The heap can be built bottom-up in O(n) time

» Extraction of the ith element takes O(log(n - i+1)) time
(for downheaping)

» Thus total run time is
T(n)=0(n)+ > log(n—i+1)
i=1
=0(n)+ Y logi
i=1

<O(n)+ ilog n

i=1

=O(nlogn)
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Quick-Sort

» Quick-sort Is a divide-and-
conquer algorithm:

[ Divide: pick a random
element x (called a pivot)
and partition S into

< L elements less than x
< E elements equal to x

< G elements greater than x
O Recur: Quick-sort L and G
[ Conquer: join L, E and G
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Algorithm QuickSort(S)
If S.size() > 1
(L, E, G) = Partition(S)
QuickSort(L)
QuickSort(G)
S=(L, E, G)
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In-Place Quick-Sort

» Note: Use the lecture slides here instead of the textbook
Implementation (Section 11.2.2)

Partition set into two using
randomly chosen pivot

D
RN
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Maintaining Loop Invariant

PARTITION(A, p,r)

1 x <« Alr] P r

2 i< p-—1 pp——
3 forj<—ptor —1 -

4 doif A[j] < x 2 -

5 theni/ <« i + 1 R S
6 exchange A[i] & A[j] |

7 exchange Ali + 1] <& A|r]

8 returni + 1 p r

Loop invariant:

P r
1. All entries in A[p ..i] are < pivot. e
2. All entries in A[i +1..j — 1] are > pivot. =* =%
3. Alr] = pivot.
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Algorithm QuickSort(A, p, )
fp<r
g = Partition(A, p, )
QuickSort(A, p,g-1)
QuickSort(A, g+ 1, r)
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Summary of Comparison Sorts

Algorithm | Best Worst | Average | In Stable | Comments
Case | Case |Case Place

Selection
Bubble
Insertion
Merge

Heap
Quick

YORKH
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n2

n

n

nlogn

nlog n

nlogn
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n? nlog n

Yes

Yes

No

Yes

Yes

- 55 -

Yes

Yes

Yes

No
No

Good if often almost sorted

Good for very large datasets that
require swapping to disk

Best if guaranteed n log n required

Usually fastest in practice
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Comparison Sort: Decision Trees

» For a 3-element array, there are 6 external nodes.

» For an n-element array, there are n! external nodes.

compare A[1] to A[2]

(12D
A[11<A[2] S A[1]>A[2]
(23)  A<A2] (B Al > A2
:'(1.2.3)' C 128 ) (2,1,3)] [ 2:3 )
A[1]<A[2] < A[3] j& ﬂ
(1,3.2)) (3,1,2) (2.3,1) 3.2.1)
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Comparison Sort

» To store n! external nodes, a decision tree must have a
height of at least | logn! |

» Worst-case time Is equal to the height of the binary
decision tree.

Thus T(n) e Q(Iog n !)

LnIZJ
Wherelogn!—ZIogl > 2 log| n/2|eQ(nlogn)

=1

Thus T(n) e Q(nlogn)

Thus MergeSort & HeapSort are asymptotically optimal.
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Linear Sorts?

Comparison sorts are very general, but are Q(nlogn)

Faster sorting may be possible if we can constrain the nature of the input.
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CountingSort

Input: @O 0]1/3|1

1

3

1

0

2

Output: 1

Index: [0|1(2|3 /4|5

10

11]12

13|14{15/16|17

18

Va

Location of next record
with digit v.

N

1

2/

v

5

14

Algorithm: Go through the records in order
putting them where they go.
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CountingSort

mput: [1]0Jo1]3]1]1]3]1]0[2[1]0]1]2]2]2]1]0

Output: | O 1

Index: |0|1 415|6|7|8|910/11/12]1314/15/16/17/18
Valuew: | O\ 1 2/’3//

Location of next record 0% |14]17

with digit v.

Algorithm: Go through the records in order
putting them where they go.

YORK ' CSE 2011
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RadixSort

344 333 2 24

125 _ 143 125
333 Sort wrt which 243 Sort wrt which 2 95

134 digitfirst? g4y digit Second? 4 5

224 134 333
334 The least 224 The next least 134
143 significant. 334 significant. 3 34
225 125 143
325 225 243
243 325 344

\_Y_’
Is sorted wrt least sig. 2 digits.

Last Updated: 4/1/10 2:37 PM
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RadixSort

2|24 1125 *:
1|25 1134
2125 Is sorted wrt 1143 Is sorted wrt
3125  first 1 digits. 5194 first 1+1 digits.
3(33
1134 2125
324 & 2143 These are in the
1143 3105 correct order
ol43  Sortwrt i+1st 3133 because sorted
3l 44 digit. ql3q Wt high order digit
=
i 3144
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Example 3. Bucket Sort

» Applicable if input is constrained to finite interval, e.qg.,
[0...1).

» If input iIs random and uniformly distributed, expected
run time is O(n).
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Bucket Sort

insert A[i] into list B[|n - A[i]]]

A B
| .78 0|/
2 117 || =112 —1+—>{.17|/
3 1.39 2 | —+—>.21{ —+—>{.23| —+—>{.26|/
4 1.26 3| —+—.39
5 .72 41/
6 .94 5/
7 121 6| —+>.68/
8 .12 71 1+—=>1.72| —+>1.78| ./
9 .23 8 |/
10 .68 9| —+—>»{94|/
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Topic 3. Graphs
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Graphs

» Definitions & Properties

» Implementations

» Depth-First Search

» Topological Sort

» Breadth-First Search

» Weighted Graphs

» Single-Source Shortest Path on DAGs

» General Single-Source Shortest Path (Dijkstra’s Algorithm)
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Properties

Property 1 Notation
Y. deg(v) =2|E| V| number of vertices
Proof: each edge is counted [E|  number of edges
twice deg(v) degree of vertex v
Property 2
In an undirected graph with no Example
self-loops and no multiple . |V|=4
edges . |E|=6
[E| <[V] (V|- 1)/2 = deg(v) =3

Proof: each vertex has degree
at most (|V|-1)

Q: What is the bound for a digraph?
A: JE[<I(v[-2

CSE 2011
UYNQBS.,E ' Bt J. Sl - 67 - Last Updated: 4/1/10 2:37 PM

UNIVER SITY




Main Methods of the (Undirected) Graph ADT

» Vertices and edges » Update methods

] are positions  insertVertex(0): insert a vertex

storing element o
[ store elements J

d insertEdge(v, w, 0): insert an

» Accessor methods edge (v,w) storing element o
 endVertices(e): an array of the O removeVertex(v): remove vertex
two endvertices of e v (and its incident edges)
J opposite(v, e): the vertex [ removeEdge(e): remove edge e

opposite to v on e

0 areAdjacent(v, w): true iff v and > Iterator methods

w are adjacent O incidentEdges(v): edges
_ incident to v
O replace(v, X): replace element at _ _ _
vertex v with X  vertices(): all vertices in the
U replace(e, x): replace element at St
edge e with x [ edges(): all edges in the graph
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Running Time of Graph Algorithms

» Running time often a function of both |V| and |E]|.

» For convenience, we sometimes drop the | . | in
asymptotic notation, e.g. O(V+E).
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Implementing a Graph (Simplified)

1 2] 5]/
2| O ST {3 4]
3| 2] Hals
4 =2 =5 43|/
o g =2 L=z
3 4 1] 2]/]

Adjacency List

Space complexity: OV +E)
Time to find all neighbours of vertexu : @(degree(u))

Time to determine if (u,v)e E : O(degree(u))
YORKI[J| Cse2ou 0.
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DFS Example on Undirected Graph
Q unexplored

G being explored

Q finished

—  unexplored edge

—p  discovery edge

- — = » back edge
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Example (cont.)

CSE 2011
UYNQBS,KE ' Prof. J. Elder -72 - Last Updated: 4/1/10 2:37 PM

VVVVVVVVVV




DFS Algorithm Pattern

DFS(G)
Precondition: G Is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV[G] b
color[u] = BLACK //initialize vertex \ total work
for each vertex u e V[G] ) = 0(V)
If color[u] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u Is undiscovered

Postcondition: all vertices reachable from u have been processed
colourfu] « RED

for each v € Adj[u] //explore edge (u,v) )
if color[v] = BLACK | total W:;‘f ;
DFS-Visit(v) = 21 Adjlv11=6(E)

-

/
Thus running time = 6(V + E) \\
(assuming adjacency list structure)

colour[u] « GRAY

CSE 2011
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Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 1T[u]

] Label edges in the graph according to their role in the search
(see textbook)

< Tree edges, traversed to an undiscovered vertex

<> traversed to a descendent vertex on the current
spanning tree

<-Back edges, traversed to an ancestor vertex on the current
spanning tree

<-Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent
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UYNQBSKE ' Prof. J. Elder -75 - Last Updated: 4/1/10 2:37 PM




DAGs and Topological Ordering

» A directed acyclic graph (DAG) is a
digraph that has no directed cycles

» A topological ordering of a digraph Q G
IS @ numbering

YA G

of the vertices such that for every e

edge (v;, vj), we have i <]

» Example: in a task scheduling e DAG G
digraph, a topological ordering is a
task sequence that satisfies the v, Ve

precedence constraints
Theorem V2

A digraph admits a topological
ordering if and only if it is a DAG

Topological
ordering of G
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Linear Order
Alg: DFS ~ound
Not Handled

a
/\ Stack
h

b
C I Ii
1T
IJ
e K
g f
f e ol %
YORK[JJ cse20n f
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Linear Order

Alg: DFS
/a\
h

%i
! 9

<

Found
Not Handled
Stack

o Db —

When node is popped off stack, insert at front of linearly-ordered “to do” list.

Linear Order:
YORK ' CSE 2011 8.
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Linear Order
Alg: DFS Found
Not Handled

a
/\ Stack
h

!
8
!

J

e 1 /k
>
N\ g
d
Linear Order:
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BFS Example

undiscovered

° discovered (on Queue)
—
_—-—— )

finished
unexplored edge

discovery edge

cross edge

______
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BFS Example (cont.)

- ———

- ——

- ——

————
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BFS Example (cont.)

- ——

————

————
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Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
[ once as BLACK (undiscovered)
[ once as RED (discovered, on queue)
O once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex Is inserted once into a sequence L,

» Thus BFS runs in O(|V|+|E|) time provided the graph is
represented by an adjacency list structure
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BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance 6[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex ueV|[G]
d[u] < oo
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] « RED
d[s]«< O
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] < RED

dlv] < d[u]+1
n[v]«u
Q.enqueue(v)
colour[u] « GRAY
UYNORK ' ~SE 201 -84 - Last Updated: 4/1/10 2:37 PM
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Single-Source (Weighted) Shortest Paths
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Relaxing an edge

» Can we improve shortest-path estimate for v by first going to u
and then following edge (u,v)?

RELAX(u, v, w)
If d[v] > d[u] + w(u, v) then

d[v] « d[u] + w(u, V)

T[v]«<— u

{ Y !
PPN 2 AT e ¢ 2 =
LS 9 S—>»{( 6

: RELAX(14,v,w) : RELAX(u,v,w)

" J v i ? )
LI, 2 T ) o
(> 7) (S —»{ f
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General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.
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Example: Single-source shortest paths in a directed
acyclic graph (DAG)

» Since graph is a DAG, we are guaranteed no
negative-weight cycles.

» Thus algorithm can handle negative edges
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Example
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Example
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Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

» This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).
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Dijkstra’s Algorithm: Operation

» We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

» We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

» At each step

1 We add to the cloud S the vertex u outside the cloud with the smallest
distance label, d(u)

 We update the labels of the vertices adjacent to u
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Dijkstra's algorithm: Analysis

Analysis:
Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

INITIALIZE-SINGLE-SOURCE(G, s) O(V)
S <~ 0
Q < VIG]
while Q #
do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
S «— S U {u)
for each vertex v € Adj[u]
do RELAX(u, v, w) O(logV ) xO(E) iterations

O ~1 O U B W =

— Running Time is O(ElogV)
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Example A White & VertexeQ=V -S
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Example
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Example
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Example

(d)
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Example

(d)
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